检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨海华 冯仰德[1] 王珏[1] 聂宁明[1] 刘芳[1] 张博尧[1] YANG Hai-Hua;FENG Yang-De;WANG Jue;NIE Ning-Ming;LIU Fang;ZHANG Bo-Yao(Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China)
机构地区:[1]中国科学院计算机网络信息中心,北京100190 [2]中国科学院大学,北京100049
出 处:《计算机系统应用》2018年第8期164-169,共6页Computer Systems & Applications
基 金:国家重点研发计划(2017YFB0203704)~~
摘 要:网站权威性一般是由外部链接来衡量,高质量的外部链接越多,网站的权威性就越高;常用的评价网站权威性的算法有Page Rank等,然而该类算法对网站权威性的影响是有选择性的,使得这种方法具有一定的弊端.本文利用深度学习的方法,通过将搜索词和网址映射为向量,计算两个向量之间的相似度来评判在某个搜索词下不同网址的权威性,把计算结果相似度高对应的网站称为在该搜索词下权威性高的网站,从而从另一种角度去衡量网站的权威性.通过对比使用Word2vec和LSTM两种不同的模型实验,在对公开的数据集上的实验结果表明使用这两种模型是有效的,其中LSTM模型比Word2vec模型的效果要好.Website authority is generally measured by external links. The more high-quality external links are, the more authoritative the website or web page itself is. Evaluation website authoritative algorithm has Page Rank and so on.However, the impact of such algorithms on the authority of the website is selective, making this method has some drawbacks. This study uses the method of deep learning, by mapping search terms and URLs into vectors, and then calculates the similarity between two vectors to judge the authority of different websites under a certain search term. The website with high similarity of calculation results is referred to as an authoritative site under the search term, so we can use another view to measure the authority of website. By comparing two different model experiments using Word2vec and LSTM, the experimental results on open datasets show that it is effective to use both models, and LSTM model is better than Word2vec model.
关 键 词:网站权威性 Word2vec LSTM 自然语言处理
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP393.092[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.237.222