检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭家驹 秦乐 赵新[1,2] 郭雪梅[5,4] 王国利[5,4] Jiaju TAN1,2, Le QIN3,5, Xin ZHAO1,2, Xuemei GUO4,5, Guoli WANG4,5(1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300350, China; 2. Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; 3. School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China; 4. School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China; 5. Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, Sun Yat-Sen Uni versity, Guangzhou 510006, Chin)
机构地区:[1]南开大学机器人与信息自动化研究所,天津300350 [2]南开大学天津市智能机器人技术重点实验室,天津300350 [3]中山大学电子与信息工程学院,广州510006 [4]中山大学机器智能与先进计算教育部重点实验室,广州510006 [5]中山大学数据科学与计算机学院,广州510006
出 处:《中国科学:信息科学》2018年第7期903-918,共16页Scientia Sinica(Informationis)
基 金:国家自然科学基金(批准号:61772574;61375080);大型科学仪器设备共享专项(批准号:2015B030304001);广东省自然科学基金重点项目(批准号:2015A030311049)资助
摘 要:为有效对抗窄带射频层析成像测量过程中所存在的多径干扰,实现对阴影衰落的有效估计,本文结合结构化聚集Bayes压缩感知理论,依据阴影衰落所具有的稀疏性和空间区域聚集性特征,构造阴影衰落分布的聚集稀疏先验模型,建立射频层析成像的结构化稀疏Bayes学习机制,增强射频链路对阴影衰落与其他多径衰落的辨别能力,有效抑制伪影的产生,提升射频层析成像技术对观测目标的识别性能,更好地服务于无源位置感知的实际应用.In narrowband radio tomographic imaging, the crucial challenge is to detect multipath interference effectively and obtain a better estimate of shallow fading. Based on structural cluster Bayesian compressive-sensing theory, an analysis is presented of the possible shallow fading status, and more spatial distribution information of the shallow fading is explored. As a result, a more accurate prior model combining the sparsity and cluster property of shallow fading and a better computational imaging mechanism is proposed. The experimental results show that this cluster sparsity Bayesian compressive-sensing model restrains the artifacts in the image by improving the link discrimination ability between shallow fading and multipath interference so that better recovered images can be obtained, and device-free localization performance is improved.
关 键 词:窄带射频传感网络 无源位置感知 射频层析成像 多径干扰 Bayes压缩感知
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.4.144