检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:轩华 王君妍 王薛苑 XUAN Hua;WANG Jun-yan;WANG Xue-yuan(School of Management Engineering,Zhengzhou University,Zhengzhou 450001,China)
机构地区:[1]郑州大学管理工程学院
出 处:《控制工程》2018年第8期1415-1420,共6页Control Engineering of China
基 金:教育部人文社会科学研究项目(15YJC630148);国家自然科学基金(71001091,71001090,U1604150);中国博士后科学基金(2014T70684,2013M531683);郑州大学优秀青年教师发展基金(1421326092);河南省高等学校重点科研项目(17A520058)
摘 要:研究了含串行批处理机的多阶段柔性流水车间调度问题,其中,第一阶段有多台串行批处理机而其他阶段为离散机,考虑工件在各加工阶段间的运输时间,以最小化总加权完成时间为目标建立数学模型。在常规遗传算法的基础上,设计遗传参数使其随遗传代数和适应函数值进行自适应调节,结合顺序交叉策略,提出改进的遗传算法以求解该NP难题。通过仿真软件Matlab开发调度程序实现上述算法,测试结果表明,与常规遗传算法相比,所提出算法能在较短的时间内得到更好的解;与拉格朗日松弛算法相比,求解中大规模问题时,改进遗传算法在计算时间和解的质量方面的优势较为明显。The problem of scheduling n jobs in a multi-stage flexible flowshop with serial batch production at the first stage is studied. The first stage consists of multiple serial batching machines in parallel and the other stages contain discrete machines. A mathematical model is formulated to minimize the total weighted completion time with the consideration of transportation time among the adjacent processing stages. An improved genetic algorithm is developed based on ordered crossover and adaptive adjustment of genetic parameters for this NP-hard problem where the genetic parameters are associated with the numbers of the iteration and the values of the fitness function. The above algorithm is performed using the simulation software Matlab. Testing results show that the proposed algorithm can find the better solutions within a shorter period of time, as compared with the general genetic algorithm. The comparison with Lagrangian relaxation shows that the improved genetic algorithm performs better on the computation time and solution quality for medium and large sized problems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.250.173