Towards a universal optimization of the performance of sand storage dams in arid and semi-arid areas by systematically minimizing vulnerability to siltation:A case study in Makueni,Kenya  被引量:1

Towards a universal optimization of the performance of sand storage dams in arid and semi-arid areas by systematically minimizing vulnerability to siltation:A case study in Makueni,Kenya

在线阅读下载全文

作  者:Josep de Trincheria Walter Filho Leal Ralf Otterpohl 

机构地区:[1]Institute of Wastewater Management and Water Protection,Hamburg University of Technology,Hamburg,Germany [2]Research and Transfer Centre"Sustainable Development and Climate Change Management",Hamburg University of Applied Sciences,Hamburg,Germany

出  处:《International Journal of Sediment Research》2018年第3期221-233,共13页国际泥沙研究(英文版)

摘  要:Sand storage dams are hydraulic retention structures that increase the volume of coarse sediments in seasonal sandy streams by exclusively blocking the bedload transport during runoff events. However, siltation of fine grain particles, which are transported as part of the suspended load, is a major factor causing sand storage dams to perform poorly. Therefore, this study aimed to evaluate the hydrological performance and cost-efficiency of 30 sand storage dams. This study also aimed to increase the under- standing of critical factors which may affect the performance and lead to siltation of sand storage reservoirs. The analysis was based on a physical survey of 30 sand storage dams that were built in one- stage in southeastern Kenya. Most of the study sites had the capacity to produce sand. However, the reservoirs suffered from severe siltation, which caused generalized low annual yields, reduced supply capacities, and low cost-efficiency. It is argued that the main factors for the poor performance were the high inter- and intra-annual variability of bedload transport, which coupled with the construction of one- stage spillways, led to siltation of the reservoirs. Thus, large volumes of fine grain particles accumulated in the reservoirs during runoff events with bedload layer heights lower than the height of the one-stage spillways. To systematically maximize the robustness to the inherent variability ofbedload transport, and ensure optimal performance levels by systematically minimizing siltation, spillways should be built in stages of reduced height. Thus, the lower the stage height, the higher the probability of maximizing the accumulation of coarse sediment. It is estimated that a multi-stage construction process with stage heights of 20 cm would have produced a performance 26 times higher. This implies that the 30 reservoirs would have had the capacity to supply 8516 people as compared to the current supply capacity of 330 people. Improvements in the performance of sand storage dams can greatly assist attempSand storage dams are hydraulic retention structures that increase the volume of coarse sediments in seasonal sandy streams by exclusively blocking the bedload transport during runoff events. However, siltation of fine grain particles, which are transported as part of the suspended load, is a major factor causing sand storage dams to perform poorly. Therefore, this study aimed to evaluate the hydrological performance and cost-efficiency of 30 sand storage dams. This study also aimed to increase the under- standing of critical factors which may affect the performance and lead to siltation of sand storage reservoirs. The analysis was based on a physical survey of 30 sand storage dams that were built in one- stage in southeastern Kenya. Most of the study sites had the capacity to produce sand. However, the reservoirs suffered from severe siltation, which caused generalized low annual yields, reduced supply capacities, and low cost-efficiency. It is argued that the main factors for the poor performance were the high inter- and intra-annual variability of bedload transport, which coupled with the construction of one- stage spillways, led to siltation of the reservoirs. Thus, large volumes of fine grain particles accumulated in the reservoirs during runoff events with bedload layer heights lower than the height of the one-stage spillways. To systematically maximize the robustness to the inherent variability ofbedload transport, and ensure optimal performance levels by systematically minimizing siltation, spillways should be built in stages of reduced height. Thus, the lower the stage height, the higher the probability of maximizing the accumulation of coarse sediment. It is estimated that a multi-stage construction process with stage heights of 20 cm would have produced a performance 26 times higher. This implies that the 30 reservoirs would have had the capacity to supply 8516 people as compared to the current supply capacity of 330 people. Improvements in the performance of sand storage dams can greatly assist attemp

关 键 词:Bedload transport variability SPILLWAY Multi-stage construction 

分 类 号:TV147[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象