检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋青松[1] 张超 陈禹 王兴莉 杨小军[1] SONG Qingsong;ZHANG Chao;CHEN Yu;WANG Xingli;YANG Xiaojun(School of Information Engineering, Chang'an University, Xi'an 710064, China)
机构地区:[1]长安大学信息工程学院
出 处:《清华大学学报(自然科学版)》2018年第8期725-731,共7页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(61201406,61473047);中央高校基本科研业务费专项资金资助项目(310824162022,300102248201,300102248401)
摘 要:常见的道路分割方法往往环境噪声鲁棒性不足并且分割边缘不够平滑。针对该问题,提出了一种组合全卷积神经网络和全连接条件随机场的道路分割方法。首先,利用深度神经网络良好的特征表征能力,将道路分割视为一个二分类问题,构建一个基于VGG_16深度卷积网络的全卷积网络,实现道路图像端到端的路面和背景分类;然后,利用全连接条件随机场能够实现图像精细分割的特点,采用全连接条件随机场对二分类得到的粗糙边缘再进行平滑优化。针对真实环境下采集的道路分割基准数据库的测试结果表明:该方法获得了98.13%的分割准确率以及每0.84s处理1幅图像的分割速度,具有一定的先进性。Common road segmentation methods are often limited by environmental noise and the roughness of the segmenting edges.A road segmentation method was developed to address these shortcomings by combining a fully convolutional neural network and a conditional random field.The feature representation in the neural networks models the road segmentation as a binary classification problem.A VGG-16 deep convolutional neural network based fully convolutional network was constructed to classify each road image end to end into the road and the background.Then,the fully-connected conditional random field(CRF)was used for fine segmentation to refine the coarse edges obtained from the binary classification.Tests of road segmentation benchmark datasets acquired in real environments show that this method can achieve 98.13% segmentation accuracy and real-time processing with 0.84 sperimage.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.0.146