基于多尺度小波变换和结构化森林的表面裂纹分割  被引量:6

Surface Crack Segmentation Based on Multi-Scale Wavelet Transform and Structured Forest

在线阅读下载全文

作  者:王森[1] 伍星[1] 张印辉[1] 陈庆[1] Wang Sen;Wu Xing;Zhang Yinhui;Chen Qing(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming,Yunnan 650500,China)

机构地区:[1]昆明理工大学机电工程学院,云南昆明650500

出  处:《光学学报》2018年第8期225-234,共10页Acta Optica Sinica

基  金:国家自然科学基金(61461022;61761024)

摘  要:为实现复杂背景下裂纹目标的有效检测,提出一种融合小波边缘检测与多尺度结构化森林的裂纹分割方法,以提高裂纹检测稳健性。该方法利用多幅裂纹图像和人工标注结果提取裂纹图像特征通道并离散化映射标准结果;利用三角滤波器和降采样方法获取常规和相关性候选特征;并将该特征与离散化后的标签进行结构化森林分类器的训练和验证,进而获得多个尺度的裂纹分割。在776幅结构体裂纹图像和600幅钢梁裂纹图像数据集上进行实验,结果表明,相比于单一多尺度结构化森林方法和其他几种分割方法,本文方法能够在较短的时间内获得最高的分割精度。In order to effectively detect crack,a crack segmentation method using multi-scale structured forests and wavelet transform is proposed to improve robust performance of crack detection.The multi-channel feature extraction of crack image,and discrete mapping of the corresponding ground truth is carried out respectively with assistance of multiple crack image and ground truth.Triangle filter and down-sample are adopted to process regularity candidate features and correlation candidate features,which are used to train and validate structured forest classifier.And,structured forest classifier is used to crack segmentation of test images in multi-scale.According to experiment results in776 structural crack image and 600 steel beam image datasets,the proposed method can obtain highest segmentation accuracy in a short time than single multi-scale structured forest method and other segmentation methods.

关 键 词:机器视觉 表面裂纹分割 多尺度结构化森林 反对称双正交小波变换 半重构 模极大值边缘检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象