Layered double hydroxides with atomic-scale defects for superior electrocatalysis  被引量:10

Layered double hydroxides with atomic-scale defects for superior electrocatalysis

在线阅读下载全文

作  者:Oixian Xie Zhao Cai Pengsong Li Daojin Zhou Yongmin Bi Xuya Xiong Enyuan Hu Yaping Li Yun Kuang Xiaoming Sun 

机构地区:[1]State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China [2]Department of Chemistry and Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA [3]Chemistry Division, Brookhaven National Laboratory Upzon, New York 11973, USA [4]College of Energy, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

出  处:《Nano Research》2018年第9期4524-4534,共11页纳米研究(英文版)

摘  要:Atomic composition tuning and defect engineering are effective strategies to enhance the catalytic performance of multicomponent catalysts by improving the synergetic effect; however, it remains challenging to dramatically tune the active sites on mulficomponent materials through simultaneous defect engineering at the atomic scale because of the similarities of the local environment. Herein, using the oxygen evolution reaction (OER) as a probe reaction, we deliberately introduced base-soluble Zn(II) or AI(III) sites into NiFe layered double hydroxides (LDHs), which are one of the best OER catalysts. Then, the Zn(II) or AI(III) sites were selectively etched to create atomic M(I0/M(IIo defects, which dramatically enhanced the OER activity. At a current density of 20 mA.cm-2, only 200 mV overpotential was required to generate M(II) defect-rich NiFe LDHs, which is the best NiFe-based OER catalyst reported to date. Density functional theory (DFT) calculations revealed that the creation of dangling Ni-Fe sites (i.e., unsaturated coordinated Ni-Fe sites) by defect engineering of a Ni-O-Fe site at the atomic scale efficiently lowers the Gibbs free energy of the oxygen evolution process. This defect engineering strategy provides new insights into catalysts at the atomic scale and should be beneficial for the design of a variety of catalysts.Atomic composition tuning and defect engineering are effective strategies to enhance the catalytic performance of multicomponent catalysts by improving the synergetic effect; however, it remains challenging to dramatically tune the active sites on mulficomponent materials through simultaneous defect engineering at the atomic scale because of the similarities of the local environment. Herein, using the oxygen evolution reaction (OER) as a probe reaction, we deliberately introduced base-soluble Zn(II) or AI(III) sites into NiFe layered double hydroxides (LDHs), which are one of the best OER catalysts. Then, the Zn(II) or AI(III) sites were selectively etched to create atomic M(I0/M(IIo defects, which dramatically enhanced the OER activity. At a current density of 20 mA.cm-2, only 200 mV overpotential was required to generate M(II) defect-rich NiFe LDHs, which is the best NiFe-based OER catalyst reported to date. Density functional theory (DFT) calculations revealed that the creation of dangling Ni-Fe sites (i.e., unsaturated coordinated Ni-Fe sites) by defect engineering of a Ni-O-Fe site at the atomic scale efficiently lowers the Gibbs free energy of the oxygen evolution process. This defect engineering strategy provides new insights into catalysts at the atomic scale and should be beneficial for the design of a variety of catalysts.

关 键 词:selective defect engineering atomic vacancy layered double hydroxide ELECTROCATALYSIS oxygen evolution reaction 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象