二阶锥上的张量二次特征值互补问题  

Quadratic Eigenvalue Complementarity Problems of Tensor on Second-order Cone

在线阅读下载全文

作  者:闫伟杰 凌晨[1] YAN Weijie;LING Chen(Schoolof Science,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)

机构地区:[1]杭州电子科技大学理学院,浙江杭州310018

出  处:《杭州电子科技大学学报(自然科学版)》2018年第4期90-93,97,共5页Journal of Hangzhou Dianzi University:Natural Sciences

基  金:国家自然科学基金资助项目(11571087);浙江省自然科学基金重点资助项目(LZ14A010003)

摘  要:针对二阶锥上的张量二次特征值互补问题,提出了与之对应的非线性规划转化形式。进一步得到相应非线性规划模型的最优解或稳定点与二阶锥上的张量二次特征值互补问题解的关系,为设计求解张量二次特征值互补问题的算法提供了一条有效途径。For the quadratic eigenvalue complementarity problem of tensors on the second-order cone,the corresponding nonlinear programming transformation forms are proposed.Furthermore,the relations between the optimal solutions or stable points of the corresponding nonlinear programming models and the solutions of the quadratic eigenvalue complementarity problem of tensors on the second-order cone are proved.This provides an effective way for the design of algorithms of solving the quadratic eigenvalue complementarity problem of tensors on the second-order cone.

关 键 词:张量 二次特征值互补问题 二阶锥 非线性规划 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象