检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Natural and Applied Science, Northwestern Polytechnical University
出 处:《Chinese Journal of Structural Chemistry》2018年第7期1146-1154,共9页结构化学(英文)
基 金:supported by the National Natural Science Foundation of China(51373137);the International cooperation project of Shaanxi Province(2016KW-053);the Natural Science Basic Research Plan in Shaanxi(2017JQ2002)
摘 要:A novel graphene oxide/titanium dioxide(GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2 as the core and(3-Glycidyloxypropyl) trime thoxysilane(KH560) and polyetheramine-M2070 as the shell. The morphology and structure of GO/TiO2 nanofluid were verified by Transmission electron microscopy(TEM), X-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and UV-vis absorption spectra. These studies confirmed that TiO2 has been deposited onto GO with good dispersion, and the organic shell has been grafted onto the core successfully. Thermo gravimetric analysis(TGA) and viscosity analysis indicated that this nanoparticle hybrid material presented a liquid state without solvent at room temperature, and has great fluidity and thermal stability. The solubility investigation of GO/TiO2 nanofluid revealed its excellent amphiphilicity and the potential as the functional nanocomposites.A novel graphene oxide/titanium dioxide(GO/TiO2) solvent-free nanofluid was firstly synthesized by employing GO, which was in-situ deposited by TiO2 as the core and(3-Glycidyloxypropyl) trime thoxysilane(KH560) and polyetheramine-M2070 as the shell. The morphology and structure of GO/TiO2 nanofluid were verified by Transmission electron microscopy(TEM), X-ray diffraction(XRD) analysis, Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and UV-vis absorption spectra. These studies confirmed that TiO2 has been deposited onto GO with good dispersion, and the organic shell has been grafted onto the core successfully. Thermo gravimetric analysis(TGA) and viscosity analysis indicated that this nanoparticle hybrid material presented a liquid state without solvent at room temperature, and has great fluidity and thermal stability. The solubility investigation of GO/TiO2 nanofluid revealed its excellent amphiphilicity and the potential as the functional nanocomposites.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28