高强汽车大梁钢S700L性能预测模型分析  被引量:8

Analysis of performance prediction model of high strength automobile beam steel S700L

在线阅读下载全文

作  者:夏碧峰 杜振民[1] 崔全法[2] 费书梅[2] 吴新朗[2] 武巧玲[2] XIA Bi-feng;DU Zhen-min;CUI Quan-fa;FEI Shu-mei;WU Xin-lang;WU Qiao-ling(School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China;Shougang Qian'an Iron and Steel Company,Qian'an 064400,Hebei,China)

机构地区:[1]北京科技大学材料科学与工程学院,北京100083 [2]首钢股份公司迁安钢铁公司,河北迁安064400

出  处:《中国冶金》2018年第8期38-43,共6页China Metallurgy

摘  要:根据首钢股份公司迁安钢铁公司(以下简称首钢迁钢)生产实际,结合现有工装设备,通过对S700L大梁钢生产数据、成分及性能检测数据系统分析,找出影响其性能的关键因子。通过多因子回归分析,摸索适应于高强汽车大梁钢S700L性能数字模型,并通过已知的炼钢、轧制工艺知识验证剖析回归方程的可行性,优化生产工艺及性能数字预测模型。使用DOE设计,探索最低合金成本各元素配比响应优化值,为生产工艺的调整提供有效的参考,并尝试通过模型内合金元素的配比变化,为探索生产更高级别高强钢的可能性提供一种新的思路。According to the actual production of the Shougang corporation Qian′an steel corp(hereinafter referred to as the relocation of Shougang Qiansteel),combined with the present equipment,through the systematic analysis of production data,components and performance data of S700 Lsteel,identifying the key factors which affected the performance were obtained.Based on the multi-factor regression analysis,the digital model suitable for the performance of S700 Lsteel was figured out.The feasibility of the regression equation was validated and analyzed by the knowledge of steelmaking and rolling process,optimization of and the production technology and performance digital prediction model were optimized.The DOE design was used to explore the response optimization value of each alloying element ratio on the condition of the minimum alloy cost,which provided the effective reference for the production process adjustment.And through trying to change the ratio of alloying elements in the model,a new idea of the exploring the production of a higher level of high strength steel was provided.

关 键 词:回归分析 性能预测模型 成分 轧制工艺 DOE设计 

分 类 号:U465.11[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象