检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋程 张永仙[3] 夏彩韵[4] 张盛峰 高冰莹[1] 郑世禄 Song Cheng;Zhang Yongxian;Xia Caiyun;Zhang Shengfeng;Gao Bingying;Zheng Shilu(Tianjin Earthquake Agency,Tianjin 300201,China;Institute of Earthquake Forecasting,China Earthquake Administration,Beijing 100036,China;China Earthquake Networks Center,China Earthquake Administration,Beijing 100045,China;Liaoning Earthquake Agency,Shenyang 110034,China;Institute of Geophysics,China Earthquake Administration,Beijing 100081,China;Shandong Earthquake Agency,Jinan 250014,China)
机构地区:[1]天津市地震局,中国天津300201 [2]中国地震局地震预测研究所,中国北京100036 [3]中国地震台网中心,中国北京100045 [4]辽宁省地震局,中国沈阳110034 [5]中国地震局地球物理研究所,中国北京100081 [6]山东省地震局,中国济南250014
出 处:《地震学报》2018年第4期491-505,共15页Acta Seismologica Sinica
基 金:国家自然科学基金面上项目(11672258); 中国地震台网中心青年科技基金课题(QNJJ201712)联合资助
摘 要:以日本局部地区(32.0°N—46.0°N,136.0°E—148.0°E)为研究区域,应用图像信息(PI)方法,获得了不同计算参数模型下包含2011年3月11日日本东北MW9.0地震的多组预测窗热点图像。以0.5°×0.5°和1.0°×1.0°的网格尺度和5—10年预测窗长为主要参数变量,并以R值和受试者工作特征(ROC)方法检验不同参数模型下PI方法的预测效能。结果表明,多组参数模型下MW9.0地震所在预测窗内,其震中所在网格及其摩尔邻近网格均曾出现热点图像,表明PI方法可对日本东北MW9.0地震作出预测。综合R值评分和ROC检验分析可知,网格尺度相对较大、预测窗长相对较长的模型,其预测效果更好。In this paper,the local area(32.0°N–46.0°N,136.0°E–148.0°E) of Japan was chosen to be the studied region to verify the predictability of the pattern informatics(PI) method under different models with different parameters,using the receiver-operating characteristic(ROC) curve test and R score test. Pattern informatics(PI) method was applied to retrospective study on the forecasting of large earthquakes in this region,especially the 2011 TohokuOki MW9.0 earthquake. Different forecasting hotspot maps with different parameters were obtained. The grid size were 0.5°×0.5° and 1.0°×1.0°,and forecasting window length was 5 to 10 years respectively. The results showed that,PI method could forecast the Tohoku-Oki MW9.0 earthquake under most of the models,and the hotspots appeared in MW9.0 earthquake's epicentral grid or its Moore neighborhood grids. The ROC test and R score test analysis revealed that the forecasting effect was better for the models with larger grid size and longer window length compared to other models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30