A Novel Method to Solve Nonlinear Klein-Gordon Equation Arising in Quantum Field Theory Based on Bessel Functions and Jacobian Free Newton-Krylov Sub-Space Methods  

A Novel Method to Solve Nonlinear Klein-Gordon Equation Arising in Quantum Field Theory Based on Bessel Functions and Jacobian Free Newton-Krylov Sub-Space Methods

在线阅读下载全文

作  者:K.ParAND M.Nikarya 

机构地区:[1]Department of Computer Sciences, Shahid Beheshti University

出  处:《Communications in Theoretical Physics》2018年第6期637-644,共8页理论物理通讯(英文版)

摘  要:The Klein-Cordon equation arises in many scientific areas of quantum mechanics and quantum field theory. In this paper a novel method based on spectral method and Jacobian free Newton method composed by generalized minimum residual (JFNGMRes) method with adaptive preconditioner will be introduced to solve nonlinear Klein-Gordon equation. In this work the nonlinear Klein-Gordon equation has been converted to a nonlinear system of algebraic equations using collocation method based on Bessel functions without any linearization, discretization and getting help of any other methods. Finally, by using JFNGMRes, solution of the nonlinear algebraic system will be achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the Klein-Gordon equation and compare our results with other methods.

关 键 词:nonlinear partial differential equation spectral collocation methods Jacobian free Newton-GMRes adaptive preconditioning Klein-Gordon equations nonlinear algebraic systems 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象