检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Computer Sciences, Shahid Beheshti University
出 处:《Communications in Theoretical Physics》2018年第6期637-644,共8页理论物理通讯(英文版)
摘 要:The Klein-Cordon equation arises in many scientific areas of quantum mechanics and quantum field theory. In this paper a novel method based on spectral method and Jacobian free Newton method composed by generalized minimum residual (JFNGMRes) method with adaptive preconditioner will be introduced to solve nonlinear Klein-Gordon equation. In this work the nonlinear Klein-Gordon equation has been converted to a nonlinear system of algebraic equations using collocation method based on Bessel functions without any linearization, discretization and getting help of any other methods. Finally, by using JFNGMRes, solution of the nonlinear algebraic system will be achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the Klein-Gordon equation and compare our results with other methods.
关 键 词:nonlinear partial differential equation spectral collocation methods Jacobian free Newton-GMRes adaptive preconditioning Klein-Gordon equations nonlinear algebraic systems
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117