电动汽车共享站点间车辆人工调度策略  被引量:14

Inter-Site-Vehicle Artificial Scheduling Strategy Design for Electric Vehicle Sharing

在线阅读下载全文

作  者:王宁[1] 张文剑 刘向 左静 WANG Ning;ZHANG Wenjian;LIU Xiang;ZUO Jing(College of Automotive Studies,Tongji University,Shanghai 200092,China;College of Transportation Engineering,Tongji University,Shanghai 200092,China)

机构地区:[1]同济大学汽车学院,上海200092 [2]同济大学交通运输工程学院,上海200092

出  处:《同济大学学报(自然科学版)》2018年第8期1064-1071,共8页Journal of Tongji University:Natural Science

基  金:国家科技支撑计划(2015BAG11B00);中央高校基本科研业务经费专项资金(kx0170020172681);上海市科技发展基金软科学研究重点项目(18692109400);上海市科学技术委员会科研计划项目(16DZ2349200)

摘  要:用户出行需求的潮汐性和不均衡性导致站点间车辆失衡问题严重,极大地制约了电动汽车共享的快速发展,采用合理的车辆人工调度策略可使车辆失衡问题得以解决.基于完全满足用户用车需求的前提,建立成本最低的调度需求模型,并采用遗传算法求解得出调度需求.构建了电动汽车共享站点间车辆人工调度策略,同时通过调度收益最大化的混合整数规划模型优化车辆调度路径,采用分支定界法求解.以"EVCARD"位于上海市嘉定区5个站点的实际订单作为输入,进行人工调度策略优化分析.结果显示:在用户用车需求增长的情景下,不增设停车位和车辆数目而采用人工调度优化策略,同比可以提升60%的订单服务量,相比增设停车位和车辆数目可以节约60%的成本投入.The inter-site-vehicle imbalance is a major puzzle which has seriously hindered the development of electric vehicle-sharing.A set of reasonable vehicle scheduling scheme can solve this puzzle.Firstly,the minimum cost of scheduling demands model based on satisfying all the consumers' demands was constructed with the genetic algorithm to solve the model.Secondly,after obtaining scheduling demands,a mixed integer programming model was proposed to optimize the dispatchers' routes,and the branch and bound algorithm was used to solve the model.Finally,taking orders data of five specified sites as input for a case calculation.The calculation results indicate that in the situation of increased demand,if artificial scheduling strategy is adopted,the ability to accept orders can be increased by 60%.In addition,it can save 60% of the cost input comparing with increasing the number of parking spaces and vehicles.

关 键 词:电动汽车共享 车辆调度 调度需求模型 遗传算法 调度路径优化模型 

分 类 号:U491.2[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象