Effect of High-temperature Annealing on Mechanical Performance and Microstructures of Different Oxygen SiC Fibers  

Effect of High-temperature Annealing on Mechanical Performance and Microstructures of Different Oxygen SiC Fibers

在线阅读下载全文

作  者:刘卫丹 ZHAO Yan DONG Anqi 

机构地区:[1]School of Materials Science and Engineering,Beihang University,Beijing 100086,China

出  处:《Journal of Wuhan University of Technology(Materials Science)》2018年第4期778-782,共5页武汉理工大学学报(材料科学英文版)

摘  要:In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.In order to explore the effect of high-temperature annealing on the mechanical performances and microstructures of different oxygen SiC fibers, two types of silicon carbide(SiC)-based fibers, specified as XD-SiC fibers(low oxygen) and Nicalon-201 fibers(high oxygen), were annealed in Ar for 1 h at 800 ℃, 1 000 and 1 200 ℃, respectively. Mechanical properties of these fibers were characterized via a monofilament tensile method, with observation of the damaged monofilament by SEM. Also, the effects of annealing on the microstructure and chemical compositions of the fibers were studied. The experimental results indicated that the tensile strength decreased with the increase of annealing temperatures,after annealing-treatment at 1200℃, XD-SiC fibers remained 84% of its original strength, while Nicalon-201 fibers remained only 58% of its original strength. Crystallization and chemical composition of the fibers are the dominating factors for their mechanical performance at high temperatures. The microstructure changes of XD-SiC fibers are mainly composed of the growth of β-SiC, for Nicalon-201 fibers, evaporation of gases is the main change for microstructure.

关 键 词:SiC fibers annealing-treatment mechanical performance MICROSTRUCTURES 

分 类 号:TQ343.6[化学工程—化纤工业]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象