Glass Forming Ability and Crystallization Kinetics of Cu-Zr-Al-(Y,Ag)Amorphous Alloy  被引量:2

Glass Forming Ability and Crystallization Kinetics of Cu-Zr-Al-(Y,Ag) Amorphous Alloy

在线阅读下载全文

作  者:岳丽杰 LIU Yali XIE Kun 

机构地区:[1]College of Material Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China [2]State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology,Shandong University of Science and Technology,Qingdao 266590,China

出  处:《Journal of Wuhan University of Technology(Materials Science)》2018年第4期938-945,共8页武汉理工大学学报(材料科学英文版)

基  金:the National Natural Science Foundation of China(No.51208288);the SDUST Research Fund(No.2014TDJH104)

摘  要:Cu-Zr-Al-(Y, Ag) amorphous alloy ribbons of Cu_(50)Zr_(42)Al_8, Cu_(46)Zr_(47-x)Al_7Y_x(x=2, 5), Cu_(43)Zr_(42)Al_8Ag_7, and Cu_(43)Zr_(42)Al_8Ag_5Y_2 were prepared using the single roller melt-spinning method. The glass forming ability and non-isothermal crystallization behavior of the amorphous alloys were investigated by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) in a continuous heating mode. The experimental results show that the glass forming ability and thermal stability of Cu-Zr-Al amorphous alloys are improved by adding minor amounts of Y and Ag, and the effect of Ag on the glass forming ability is more significant than that of Y. Compared to the Cu_(50)Zr_(42)Al_8 alloy, the width of the supercooled liquid region of the Cu_(46)Zr_(47-x)Al_7Y_x(x =2 and 5) alloys increased by 19 K and 30 K, respectively. The reduced glass transition temperature(Trg) and the parameter γ of the two alloys enhanced separately. Compared to the Cu_(50)Zr_(42)Al_8 alloy, the Trg and γ values of both Cu_(43)Zr_(42)Al_8Ag_7 and Cu_(43)Zr_(42)Al_8Ag_5Y_2 alloys enhanced noticeably up to 0.619, 0.417, and 0.609, 0.412, respectively. The crystallization activation energies of the amorphous alloys calculated by the Kissinger and Flynn Wall Ozawa equations increased with the addition of minor Y and Ag into the Cu_(50)Zr_(42)Al_8 alloy. The addition of Y and Ag significantly improved the thermal stability of the Cu_(50)Zr_(42)Al_8 amorphous alloy.Cu-Zr-Al-(Y, Ag) amorphous alloy ribbons of Cu_(50)Zr_(42)Al_8, Cu_(46)Zr_(47-x)Al_7Y_x(x=2, 5), Cu_(43)Zr_(42)Al_8Ag_7, and Cu_(43)Zr_(42)Al_8Ag_5Y_2 were prepared using the single roller melt-spinning method. The glass forming ability and non-isothermal crystallization behavior of the amorphous alloys were investigated by means of X-ray diffraction(XRD) and differential scanning calorimetry(DSC) in a continuous heating mode. The experimental results show that the glass forming ability and thermal stability of Cu-Zr-Al amorphous alloys are improved by adding minor amounts of Y and Ag, and the effect of Ag on the glass forming ability is more significant than that of Y. Compared to the Cu_(50)Zr_(42)Al_8 alloy, the width of the supercooled liquid region of the Cu_(46)Zr_(47-x)Al_7Y_x(x =2 and 5) alloys increased by 19 K and 30 K, respectively. The reduced glass transition temperature(Trg) and the parameter γ of the two alloys enhanced separately. Compared to the Cu_(50)Zr_(42)Al_8 alloy, the Trg and γ values of both Cu_(43)Zr_(42)Al_8Ag_7 and Cu_(43)Zr_(42)Al_8Ag_5Y_2 alloys enhanced noticeably up to 0.619, 0.417, and 0.609, 0.412, respectively. The crystallization activation energies of the amorphous alloys calculated by the Kissinger and Flynn Wall Ozawa equations increased with the addition of minor Y and Ag into the Cu_(50)Zr_(42)Al_8 alloy. The addition of Y and Ag significantly improved the thermal stability of the Cu_(50)Zr_(42)Al_8 amorphous alloy.

关 键 词:amorphous alloy YTTRIUM micro-alloying non-isothermal crystallization 

分 类 号:TG139.8[一般工业技术—材料科学与工程] TQ333.93[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象