检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李佳[1] 谢人超[1] 贾庆民 黄韬[1] 刘韵洁[1] 孙礼[1] LI Jia;XIE Renchao;JIA Qingmin;HUANG Tao;LIU Yunjie;SUN Li(Beijing University of Posts and Telecommunications,Beijing 100876,China)
机构地区:[1]北京邮电大学,北京100876
出 处:《电信科学》2018年第8期76-86,共11页Telecommunications Science
基 金:中央高校基本科研业务费专项资金资助项目;国家自然科学基金资助项目(No.61501042)~~
摘 要:为应对未来移动网络所面临的巨大挑战,业界提出了自适应比特流(adaptive bit rate,ABR)技术和移动边缘计算(mobile edge computing,MEC),旨在为用户提供高体验质量、低时延、高带宽和多样化的服务。联合ABR和MEC来优化视频内容分发,对于提高网络性能和用户体验质量具有重要意义。其中,各项网络资源的联合优化是重要的研究课题。首先对MEC进行了概述,然后基于面向自适应流的MEC缓存转码联合优化问题,对业界已有工作进行了分析和对比,并对未来面临的挑战和研究难点进行了归纳和展望。To deal with the huge challenges in future mobile networks, the industry has proposed adaptive bit rate(ABR) technology and mobile edge computing(MEC), aiming to provide users with diverse services of high quality of experience, low latency and high bandwidth. Combining ABR and MEC to optimize the distribution of video content has been quite important for improving network performance and quality of experience. Especially, the joint optimization of network resources has arisen as an essential research topic. An overview of MEC was firstly given, and then the existing work in the industry on the joint optimization problem of MEC caching and transcoding oriented to adaptive streaming was analyzed and compared. Finally, the existing challenges in the future were summarized.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143