机构地区:[1]Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science &Technology [2]International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and Technology, University of Hawaii
出 处:《Journal of Meteorological Research》2018年第4期534-547,共14页气象学报(英文版)
基 金:Supported by the National(Key)Basic Research and Development(973)Program of China(2017YFA0603802 and 2015CB453200);National Natural Science Foundation of China(41630423,41475084,41575043,and 41375095);US National Science Foundation(AGS-1643297);Jiangsu Province Projects of China(BK20150062 and R2014SCT001);US National Research Council(N00173-16-1-G906);China Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);SOEST contribution number 10418;IPRC contribution number 1330;ESMC contribution 216
摘 要:The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investig-ated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3-9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest-southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly ap- pears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region. Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropo-spheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anom-aly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly cen-ter over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pres-sure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over trop-ical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.
关 键 词:boreal summer intraseasonal oscillation extreme hot events extreme cool events Rossby wave train monsoonal circulation
分 类 号:P461[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...