Statistics of the Z–R Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event  被引量:3

Statistics of the Z–R Relationship for Strong Convective Weather over the Yangtze–Huaihe River Basin and Its Application to Radar Reflectivity Data Assimilation for a Heavy Rain Event

在线阅读下载全文

作  者:Xue FANG Aimei SHAO Xinjian YUE Weicheng LIU 

机构地区:[1]Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000 [2]Lanzhou Central Meteorological Observatory, Lanzhou 730020

出  处:《Journal of Meteorological Research》2018年第4期598-611,共14页气象学报(英文版)

基  金:Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430102);National Natural Science Foundation of China(41275102 and 41330527)

摘  要:The relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze-Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z-R relationship is combined with an empirical qr-R relationship to obtain a new Z-qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to im-prove the analysis and prediction of severe convective weather over the Yangtze--Huaihe River basin. The perform- ance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z-R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected refleetivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better per-forrnance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original re-flectivity operator. This suggests that the new staThe relationship between the radar reflectivity factor (Z) and the rainfall rate (R) is recalculated based on radar ob- servations from 10 Doppler radars and hourly rainfall measurements at 6529 automatic weather stations over the Yangtze-Huaihe River basin. The data were collected by the National 973 Project from June to July 2013 for severe convective weather events. The Z-R relationship is combined with an empirical qr-R relationship to obtain a new Z-qr relationship, which is then used to correct the observational operator for radar reflectivity in the three-dimensional variational (3DVar) data assimilation system of the Weather Research and Forecasting (WRF) model to im-prove the analysis and prediction of severe convective weather over the Yangtze--Huaihe River basin. The perform- ance of the corrected reflectivity operator used in the WRF 3DVar data assimilation system is tested with a heavy rain event that occurred over Jiangsu and Anhui provinces and the surrounding regions on 23 June 2013. It is noted that the observations for this event are not included in the calculation of the Z-R relationship. Three experiments are conducted with the WRF model and its 3DVar system, including a control run without the assimilation of reflectivity data and two assimilation experiments with the original and corrected refleetivity operators. The experimental results show that the assimilation of radar reflectivity data has a positive impact on the rainfall forecast within a few hours with either the original or corrected reflectivity operators, but the corrected reflectivity operator achieves a better per-forrnance on the rainfall forecast than the original operator. The corrected reflectivity operator extends the effective time of radar data assimilation for the prediction of strong reflectivity. The physical variables analyzed with the corrected reflectivity operator present more reasonable mesoscale structures than those obtained with the original re-flectivity operator. This suggests that the new sta

关 键 词:Z-R relationship Weather Research and Forecasting (WRF) model three-dimensional variational(3DVar) system data assimilation observation operator 

分 类 号:P412.25[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象