检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李婧[1] 产海兰 LI Jing;CHAN Hai-lan(School of Business,Nanjing Normal University,Nanjing 210023,China)
出 处:《研究与发展管理》2018年第4期94-104,共11页R&D Management
基 金:国家自然科学基金资助项目"基于空间相关的区域间创新协调发展研究"(71303122)
摘 要:利用2007—2014年中国30个省区面板数据,考察了R&D人员的流动分布及其影响因素.在利用人口迁移引力模型对R&D人员流动测度基础上,应用Moran I指数考察R&D人员流动的空间自相关特征;考虑R&D人员流动的空间相关性,建立空间滞后模型和空间误差模型,考察各种区域特征对R&D人员流动的影响.研究发现:中国R&D人员的区域流动规模庞大且存在地区差异性,东部沿海发达地区呈现出"高—高"聚集的R&D人员流动态势,而西部地区则处于R&D人员流动"低—低"聚集分布的洼地;工资、消费、就业等物质财富特征对R&D人员流动的影响并不显著,而技术创新水平、医疗服务、公共交通和环境质量等区域发展特征对R&D人员流动具有显著的正向吸引作用.Using the panel data of 30 provinces in China from 2007 to 2014, it explored the flow distribution of R&D personnel and its influencing factors. It used the modified gravity model to measure the amount of R&D personnel mob- ility, and described the pattern of R&D personnel flow by the method of Moran I index ; considering the spatial correla- tion, it constructed spatial lag model and spatial error model to estimate regional characteristics influencing R&D per- sonnel mobility. The results show: R&D personnel flow is large scale in China, and there are regional differences: the eastern coastal developed areas show a trend of high-high aggregation, and western regions where the economy is rela- tively backward show a low-low flow distribution ; the influence of material wealth, such as wages, consumption and em- ployment stability, is not significant, while technological innovation, medical service, public transportation and envi- ronmental quality have positive effects on attracting R&D personnel.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28