检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜浩楠[1] 蔡远利[1] JIANG Hao-nan;CAI Yuan-li(School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
机构地区:[1]西安交通大学电子与信息工程学院,西安710049
出 处:《控制与决策》2018年第9期1567-1574,共8页Control and Decision
基 金:国家自然科学基金项目(61202128);宇航动力学国家重点实验室开放基金项目(2011ADL-JD0202)
摘 要:卡尔曼滤波(KF)广泛应用于线性系统的状态估计问题.然而,它需要精确已知过程噪声的统计特性,这在实际应用中往往是不能满足的.在这个背景下,首先,根据协方差匹配原理建立一种带有过程噪声递推估计的自适应KF算法;然后,为了突破KF只能处理线性系统估计问题的局限,将过程噪声递推估计引入集合卡尔曼滤波(En KF)中,提出一种自适应En KF算法;最后,采用估计理论证明所提出算法的稳定性.与标准En KF相比,该自适应算法在过程噪声统计特性未知的情况下滤波依然收敛,滤波精度及稳定性显著提升.仿真结果验证了所提出算法的有效性.The Kalman filter(KF) is widely used for state estimation of linear systems. However, it requires accurate statistic of process noise, which is not plausible in practical applications. In this paper, an adaptive KF algorithm with recursive process noise estimation is constructed firstly by utilizing the covariance matching principle. Then, in order to break through the limitation of the KF that can only deal with the estimation problem of linear systems, the recursive process noise estimation is introduced into the ensemble Kalman filter(En KF), so that an adaptive En KF algorithm is proposed. Finally, the stability of the novel algorithm is proved through the estimation theory. Under the condition of unknown process noise statistic, the proposed adaptive En KF algorithm still converges, moreover its filtering precision and stability are better than those of the standard En KF. Simulation results validate the effectiveness of the presented algorithm.
关 键 词:卡尔曼滤波 协方差匹配 过程噪声递推估计 自适应集合卡尔曼滤波
分 类 号:V448[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222