检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈芝红 李同柱 CHEN Zhihong;LI Tongzhu(Department of Mathematics,Beijing Institute of Technology,Beijing,100081,P.R.China)
机构地区:[1]北京理工大学数学与统计学院,北京100081
出 处:《数学进展》2018年第5期773-778,共6页Advances in Mathematics(China)
基 金:国家自然科学基金(No.11571037)
摘 要:设(M^n,g)是一个黎曼流形,f:M^n→Q^(n+1)(c)是一个等距浸入,其中Q^(n+1)(c)是n+1维的空间形式.如果对于任一个等距浸入f:M^n→Q^(n+1)(c),都存在等距变换φ:Q^(n+1)(c)→Q^(n+1)(c),使得φ·f=f,则称f(M^n)具有刚性.本文证明:如果超曲面是紧致的,(1)当c≤0时,如果紧致超曲面的维数大于或等于3,则紧致超曲面具有刚性;(2)当c>0时,如果紧致超曲面的维数大于或等于5,则空间形式中紧致超曲面具有刚性;这推广了经典的Cohn-Vossen定理.Let(Mn,g) be a Riemannian manifold and f : M^n →Qc^(n+1) an isometric immersion,where Qc^(n+1) is a space form of dimension n +1 with constant sectional curvature c.If there exists an isometry φ: Qc^(n+1)→Qc^(n+1) such that φ·f=f for any isometric immersion f : M^n → Qc^(n+1), then Mn is rigidity. In this paper, we prove that if the hypersurface Mn is compact,(1) when c≤ 0 and the dimension of the hypersurface is more than or equal to 3, then the hypersurface is rigidity;(2) when c 0 and the dimension of the hypersurface is more than or equal to 5, then the hypersurface is rigidity. These results generalized Cohn-Vossen Theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63