空间形式中紧致超曲面的刚性  

Rigidity of Compact Hypersurfaces in Space Forms

在线阅读下载全文

作  者:陈芝红 李同柱 CHEN Zhihong;LI Tongzhu(Department of Mathematics,Beijing Institute of Technology,Beijing,100081,P.R.China)

机构地区:[1]北京理工大学数学与统计学院,北京100081

出  处:《数学进展》2018年第5期773-778,共6页Advances in Mathematics(China)

基  金:国家自然科学基金(No.11571037)

摘  要:设(M^n,g)是一个黎曼流形,f:M^n→Q^(n+1)(c)是一个等距浸入,其中Q^(n+1)(c)是n+1维的空间形式.如果对于任一个等距浸入f:M^n→Q^(n+1)(c),都存在等距变换φ:Q^(n+1)(c)→Q^(n+1)(c),使得φ·f=f,则称f(M^n)具有刚性.本文证明:如果超曲面是紧致的,(1)当c≤0时,如果紧致超曲面的维数大于或等于3,则紧致超曲面具有刚性;(2)当c>0时,如果紧致超曲面的维数大于或等于5,则空间形式中紧致超曲面具有刚性;这推广了经典的Cohn-Vossen定理.Let(Mn,g) be a Riemannian manifold and f : M^n →Qc^(n+1) an isometric immersion,where Qc^(n+1) is a space form of dimension n +1 with constant sectional curvature c.If there exists an isometry φ: Qc^(n+1)→Qc^(n+1) such that φ·f=f for any isometric immersion f : M^n → Qc^(n+1), then Mn is rigidity. In this paper, we prove that if the hypersurface Mn is compact,(1) when c≤ 0 and the dimension of the hypersurface is more than or equal to 3, then the hypersurface is rigidity;(2) when c 0 and the dimension of the hypersurface is more than or equal to 5, then the hypersurface is rigidity. These results generalized Cohn-Vossen Theorem.

关 键 词:等距刚性 型数 全测地叶 第二基本形式 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象