Small sample learning with high order contractive auto-encoders and application in SAR images  被引量:3

Small sample learning with high order contractive auto-encoders and application in SAR images

在线阅读下载全文

作  者:Qianwen YANG Fuchun SUN 

机构地区:[1]Department of Computer Science and Technology, Tsinghua University [2]State Key Lab of Intelligent Technology and Systems, Tsinghua University [3]Tsinghua National Laboratory for Information Science and Technology, Tsinghua University

出  处:《Science China(Information Sciences)》2018年第9期271-273,共3页中国科学(信息科学)(英文版)

摘  要:Dear editor,Recently auto-encoders(AEs)are used as intermediate layers or unsupervised learning stages in deep learning networks[1].However,unlike other deep learning algorithms,which can extract higher-order abstract features using deep structures [2, 3].Dear editor,Recently auto-encoders(AEs)are used as intermediate layers or unsupervised learning stages in deep learning networks[1].However,unlike other deep learning algorithms,which can extract higher-order abstract features using deep structures [2, 3].

关 键 词:SAR Small sample learning with high order contractive auto-encoders and application in SAR images MSTAR RBM 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象