检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Computer Science and Technology, Tsinghua University [2]State Key Lab of Intelligent Technology and Systems, Tsinghua University [3]Tsinghua National Laboratory for Information Science and Technology, Tsinghua University
出 处:《Science China(Information Sciences)》2018年第9期271-273,共3页中国科学(信息科学)(英文版)
摘 要:Dear editor,Recently auto-encoders(AEs)are used as intermediate layers or unsupervised learning stages in deep learning networks[1].However,unlike other deep learning algorithms,which can extract higher-order abstract features using deep structures [2, 3].Dear editor,Recently auto-encoders(AEs)are used as intermediate layers or unsupervised learning stages in deep learning networks[1].However,unlike other deep learning algorithms,which can extract higher-order abstract features using deep structures [2, 3].
关 键 词:SAR Small sample learning with high order contractive auto-encoders and application in SAR images MSTAR RBM
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.83.240