Active carbon supported S-promoted Bi catalysts for acetylene hydrochlorination reaction  被引量:3

Active carbon supported S-promoted Bi catalysts for acetylene hydrochlorination reaction

在线阅读下载全文

作  者:Di Hu Lu Wang Feng Wang Jide Wang 

机构地区:[1]Key Laboratory of Oil & Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, Xinjiang University

出  处:《Chinese Chemical Letters》2018年第9期1413-1416,共4页中国化学快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.U1403293,21263025);the Graduate Research and Innovation Program of Xinjiang(No.XJGRI2015010)

摘  要:In the present work, the sulfur doped bismuth-based catalysts were prepared by incipient wetness impregnation method and used for the hydrochlorination of acetylene to vinyl chloride monomer (VCM) in a fixed-bed reactor. The effect of introduction of S was characterized by N2 adsorption-desorption, powder X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, temperature-programmed reduction and X-ray photoelectron spectroscopy. The characterization results indicated that the doping of S resulted in the increase of Brunauer-Emmett-Teller (BET) surface areas and decrease of active species particle size for the Bi-based catalysts, which led to more accessible active sites, and consequently boosted the catalytic hydrochlorination activity. The effect of H2SO4 concentration on the activity of this type catalyst was examined, and the results showed that there is an optimal loading of H2SO4 (S/Bi=0.5 mol/mol), at which the conversion of C2H2 was enhanced to 81% under the reaction condition and coke deposition is a main reason for the deactivation of catalyst.In the present work, the sulfur doped bismuth-based catalysts were prepared by incipient wetness impregnation method and used for the hydrochlorination of acetylene to vinyl chloride monomer (VCM) in a fixed-bed reactor. The effect of introduction of S was characterized by N2 adsorption-desorption, powder X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, temperature-programmed reduction and X-ray photoelectron spectroscopy. The characterization results indicated that the doping of S resulted in the increase of Brunauer-Emmett-Teller (BET) surface areas and decrease of active species particle size for the Bi-based catalysts, which led to more accessible active sites, and consequently boosted the catalytic hydrochlorination activity. The effect of H2SO4 concentration on the activity of this type catalyst was examined, and the results showed that there is an optimal loading of H2SO4 (S/Bi=0.5 mol/mol), at which the conversion of C2H2 was enhanced to 81% under the reaction condition and coke deposition is a main reason for the deactivation of catalyst.

关 键 词:Bi catalyst Acetylene hydrochlorination Sulfur doped Active carbon Acetylene conversion 

分 类 号:O643.36[理学—物理化学] TL351.6[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象