检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁乙[1] 刘向君[1] 罗平亚[1] 梁利喜[1] Ding Yi;Liu Xiangjun;Luo Pingya;Liang Lixi(State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu,610500,PR.China)
机构地区:[1]西南石油大学油气藏地质及开发工程国家重点实验室,成都610500
出 处:《地下空间与工程学报》2018年第4期1130-1136,共7页Chinese Journal of Underground Space and Engineering
基 金:国家自然科学基金(U1262209;41772151);四川省应用基础研究计划项目(2014JY0092)
摘 要:页岩地层大量发育弱面结构,造成井壁垮塌现象频发,严重制约了页岩气的高效开发。因此,本文在Mohr-Coulomb准则的基础上,建立多弱面条件下的强度破坏准则。应用该准则,对不同弱面产状、弱面数量、钻井时间下的岩石强度进行分析,从而建立页岩地层坍塌压力预测模型,计算分析表明:围压增大后,页岩强度增加,不易沿弱面破坏;弱面产状和数量变化,使得岩石强度产生变化,从而造成坍塌压力分布复杂。尤其弱面数量增多,岩石强度下降明显,逐渐受弱面强度控制,坍塌压力出现明显增加;实例分析表明多弱面条件下的坍塌压力预测方法能更为准确地预测页岩地层坍塌压力,对页岩地层钻井工程有一定指导意义。Shale formation contains rich weak planes, causing wellbore collapse and restricting efficient development of shale gas. Therefore,based on the Mohr-Coulomb criterion,failure criterion with multiple weak planes has been developed. By using this new criterion,shale strength in different occurrence of weak plane,weak plane number and drilling time have been investigated. In addition,wellbore stability model with multiple weak planes have been established. The results indicate that with increasing confining stress,shale strength increases and tends to failure across rock matrix. Besides,the occurrence and number of weak planes lead to variation of shale strength and complex distribution of collapse pressure. In particular,with increasing number of weak plane,shale strength declines and is gradually controlled by weak plane strength,leading to growth of collapse pressure. Finally,this model has been applied to oilfield application,showing better prediction of collapse pressure. So it can be a viable tool and reference for drilling operation in shale formation.
分 类 号:TE355.5[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28