踝关节有限元模型的建立及其生物力学研究  被引量:5

Establishment of finite element model of ankle joint and its biomechanical study

在线阅读下载全文

作  者:李兴军[1] 保超宇 李骅[1] 王韦皓 李姝颖 吴迪[1] Li Xingjun;Bao Chaoyu;Li Hua;Wang Weihao;Li Shuying;Wu Di(Department of Orthopedics,First Affiliated Hospital of Kunming Medical University,Kunming 650000,China)

机构地区:[1]昆明医科大学第一附属医院骨科,昆明650000

出  处:《中华创伤杂志》2018年第9期827-832,共6页Chinese Journal of Trauma

基  金:云南省医疗卫生内设研究机构项目(2016NS024)

摘  要:目的构建正常踝关节三维有限元模型,模拟踝关节不同方向、不同大小受力后应力与位移变化,为探究踝关节损伤的生物力学机制提供理论基础。方法对1名30岁健康男性志愿者行左踝关节螺旋CT扫描,获取其CT图像原始数据。利用Mimics、Geomagic软件处理后生成的踝关节三维数字模型导入软件Ansys中,运用有限元法划分网格、中心节点、单元链接、模块加载等主要步骤处理后得到完整解剖结构的踝关节三维有限元模型。将所建立完整踝关节结构模型,加载不同方向和不同大小应力(使用足部压力分布测量系统测量受力变化),观察踝关节有限元模型与测试志愿者组织应力与位移变化分布,以及足跟区域在足底受力峰值、跖骨受力、足底接触受力面积和胫骨关节面接触应力的最大值、最小值、接触面积的一致性。结果正常踝关节有限元模型足底受力峰值为(0.33±0.10)MPa,跖骨受力为(0.13±0.21)MPa,足底接触压力面积为(78.60±0.32)mm2,胫骨关节面接触应力最大值为(2.72±0.10)MPa,接触应力最小值为(1.35±0.12)MPa,接触应力面积为(79.1±0.14)Ynnl。。而测试志愿者双足底受力峰值为(0.35±0.12)MPa,跖骨受力为(0.13±0.16)MPa,足底接触压力面积为(77.30±0.42)mm2,胫骨关节面接触应力最大值为(2.79±0.23)MPa,接触应力最小值为(1.37±0.20)MPa,接触应力面积为(79.10±0.14)mm2(P均〉0.05)。在所分部区域、分布趋势及数值大小基本一致,所建踝关节三维有限元模型与真实人体踝关节基本相符合。结论所构建的正常踝关节三维有限元模型能够形象、客观地体现踝关节解剖结构和生物力学特性,对认识踝关节内部力学变化及治疗踝关节损伤具有参考价值。Objective The three-dimensional finite element model of the normal ankle joint was established to simulate the changes of stress and displacement under stress from different directions and of different magnitudes so as to provide a theoretical basis for the biomeehanieal mechanism of the ankle joint injury. Methods Spiral CT scan was performed on the left ankle of a 30 year old healthy male volunteer to obtain the original CT image data. The three-dimensional digital model of ankle joint generated by Mimics and Geomagic softwares was imported into the software Ansys. The three-dimensional finite element model of ankle joint with complete anatomical structure was obtained after the main steps of meshing, central node, element linking and module loading using finite element method. Stress from different directions and of different magnitudes were loaded unto the model. The stress changes were measured by foot stress distribution measurement system. The stress changes, displacement change distribution, the stress peak value of heel are, metatarsal stress, and plantar contact stress area as well as the maximum, minimum, and contact are of the tibial articular surface contact stress were compared between the finite element model and the volunteer himself to verify the consistency. Results For the finite element model of normal ankle joint, the plantar peak stress was [ (0.33 ± 0. 10) MPa ], the metatarsal stress was [ (0.13 ± 0.21 ) MPa ], the foot contact stress area was [ ( 78.60 ± 0.32 ) mm2 ], the tibial articular surface maximum contact stress was [ (2.72 ± 0. 10 ) MPa ], the minimum contact stress was [ (1.35 ± 0. 12)MPa], and the contact stress area was [ (79. 1 ± 0. 14)mm2 ]. For the volunteer, double foot plantar peak stress was [ (0.35 ± 0. 12)MPa], the metatarsal stress [ (0.13 ± 0.16)MPa], the foot contact stress area was [(77. 3 ± 0.42)mm2 ], the tibial articular surface maximum contact stress was [ (2.79 ± 0.23 ) MPa ], the minimum contact stress was [ �

关 键 词:踝关节 成像 三维 生物力学 有限元分析 

分 类 号:R684[医药卫生—骨科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象