机构地区:[1]南京大学天文与空间科学学院,南京210046 [2]中国科学院紫金山天文台,南京210034 [3]广西相对论天体物理重点实验室广西大学物理科学与工程技术学院,南宁530004
出 处:《科学通报》2018年第24期2450-2464,共15页Chinese Science Bulletin
基 金:国家重点基础研究发展计划(2014CB845800);国家自然科学基金(11573014;11725314;11533003);中国科学院战略性先导科技专项(XDB23040000)资助
摘 要:伽玛射线暴(简称伽玛暴或gamma ray burst,GRB)是来自宇宙深处的、短时标的伽玛射线突然增强的现象,是宇宙大爆炸之后最猛烈的爆发现象.伽玛暴可分为长暴(持续时间T_(90)>2 s)和短暴(T_(90)<2 s).观测发现,长暴起源于大质量恒星的塌缩,而短暴起源于双致密星的并合.除了瞬时伽玛辐射,伽玛暴分别在暴后周、月和年时间量级上还会产生X射线、光学和射电余辉.理论上,伽玛暴的瞬时辐射被认为产生于相对论喷流内部的能量耗散过程,而多波段的余辉则产生于相对论喷流与外部介质之间的相互碰撞引起的外激波.因此,伽玛暴是研究致密天体(恒星级质量黑洞和中子星)诞生、引力波辐射、相对论激波、极高能宇宙线、高能中微子等极端物理现象以及高精度检验基本物理原理的天文实验室,也是早期宇宙恒星形成和演化、高红移星系、高红移宇宙学的重要探针.伽玛暴的研究横跨当今天文学、宇宙学、物理学等学科,是当前国际竞争最激烈的自然科学基础研究领域之一.2017年8月17日,LIGO(laser interferometer gravitational wave observatory)/Virgo引力波天文台和Fermi卫星同时分别探测到引力波事件GW170817和短时标伽玛暴GRB170817A,开辟了多信使天文学的新时代.本文结合相关的关键科学问题评述了伽玛暴和引力波电磁对应体研究领域的最新研究进展,并基于伽玛暴学科领域的发展态势和我国现有的研究基础,讨论如何抓住机遇、布局跨学科的重大研究计划,促进国内与伽玛暴相关科学设备成果的最大化,全面提升我国在这个领域的国际影响力.Gamma-ray bursts (GRBs) are short-duration flashes of gamma rays occurring at cosmological distances and the most violent explosive phenomena since the cosmic big bang. GRBs were accidentally discovered by Vela military satellites of United States in 1967. The BATSE instrument onboard the Compton Space Gamma-Ray Observatory found two types of GRBs, long-duration (T90 〉 2s) and short-duration (T90 〈 2 s). In 1997, the BeppoSAX satellite for the first time made precise localization of long GRBs, leading to the discoveries of multi-wavelength afterglows, host galaxies and cosmo- logical redshifts of long GRBs. These milestone observations were selected by Science as one of the top ten scientific breakthroughs of the year. In 1999, long GRBs were found to be associated with the birth of stellar mass black holes. In 2003, the HETE-II satellite discovered the first direct association of a long GRB with a type Ic supernova, confirming that long GRBs are linked to the core collapse of massive stars. Science ranked these two major advances as one of the world's top ten scientific breakthroughs of the year in 1999 and 2003, respectively. In 2005, the Swift satellite made the first accu- rate localization of short GRBs, leading to the discoveries of afterglows, host galaxies and redshifts of short GRBs. These observations provide indirect evidence that short GRBs originate from mergers of binary systems of compact objects (at least including one neutron star) at cosmological distances. In particular, on 2017 August 17, the LIGO/Virgo gravitational wave (GW) detectors, for the first time, discovered a GW event from a binary neutron star (BNS) merger, GW170817. About 1.74 s alter the merger, Fermi/GBM detected a short gamma-ray burst (named GRB 170817A). Subsequently, many ground-based and space-based telescopes detected X-ray, ultraviolet, optical, nearly infrared, and radio counterparts to GW 170817, especially including a multi-wavelength kilonova (named AT2017gfo). These discoveries m
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...