检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓大勇[1,2] 姚坤 肖春水[2] DENG Dayong;YAO Kun;XIAO Chunshui(,College of Mathematics,Physics and Information Engineering,Zhejiang Normal University,Jinhua 321004;Xingzhi College,Zhejiang Normal University,Jinhua 3210041)
机构地区:[1]浙江师范大学数理与信息工程学院,金华321004 [2]浙江师范大学行知学院,金华321004
出 处:《模式识别与人工智能》2018年第9期809-815,共7页Pattern Recognition and Artificial Intelligence
基 金:浙江省自然科学基金项目(No.LY15F020012)资助~~
摘 要:全粒度粗糙集是一种既能表示显式知识又能表示隐式知识的粗糙集模型,能更好地表示人类认识的复杂性、多样性和不确定性.文中结合经典粗糙集理论,定义全粒度隶属度、全粒度粗糙度、概念的全粒度属性依赖度、决策系统的全粒度属性依赖度等不确定性指标,探究这些不确定性指标的性质,指出这些不确定指标与全粒度绝对约简、概念的全粒度属性约简、全粒度Pawlak约简的联系,有助于全粒度粗糙集的属性约简和实际应用.Entire-granulation rough sets can express explicit and implicit knowledge, as well as complexity, diversity and uncertainty of human cognition. Combined with classic rough set theory, several uncertainty indexes in entire-granulation rough sets are defined, including membership degree of entire-granulation, roughness degree of entire-granulation, dependence degree of entire-granulation for a single concept and dependence degree of entire-granulation for a decision system. The properties of these indexes are investigated, and the relations between these indexes and absolute attribute reducts of entire- granulation, attribute reducts of entire-granulation for a single concept and entire-granulation Pawlak reducts are indicated. The result is a theoretical foundation for attribute reduction and practical application of entire- granulation rough sets.
关 键 词:全粒度粗糙集 全粒度隶属度 全粒度粗糙度 全粒度属性依赖度 不确定性
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117