检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐欢 王爱生 XU Huan;WANG Aisheng(Architectural Engineering College,Suqian College,Suqian Jiangsu 223800,China;School of Geography Mapping and Urban Rural Planning,Jiangsu Normal University,Xuzhou Jiangsu 221116,China)
机构地区:[1]宿迁学院,江苏宿迁223800 [2]江苏师范大学地理测绘与城乡规划学院,江苏徐州221116
出 处:《北京测绘》2018年第10期1226-1229,共4页Beijing Surveying and Mapping
摘 要:无论GPS静态测量还是动态测量,只要使用GPS载波相位观测值,都会遇到模糊度的解算问题。本文基于史赖伯约化第一法则通过在误差方程中增加若干个和方程式就可以将模糊度项消去从而直接解算流动点的坐标,进而计算模糊度的浮点解。首先介绍了史赖伯约化法则,然后通过一个算例证明使用史赖伯约化法则消去模糊度与常规的算法结果是相同的。该算例中详细呈现了非差、单差、双差观测值的构造方法及对应的误差方程系数的计算过程。Whether GPS static measurement or dynamic measurement, as long as the use of GPS carrier phase observa- tions will encounter ambiguity resolution operator problems. Based on the first rule of Schreiber reduction law, by adding a few accumulation equations in the observation equation group, ambiguity items can be eliminated so that the coordinates of rover point could be calculated, ambiguity float solution further could be estimated. Firstly the Schreiber reduction rule is introduced, then an example shows that the result using the Schreiber law is the same as conventional. The example presented in detail forming method of non-difference, single difference, double difference observation and calculation process of corresponding error equation coefficients.
分 类 号:P228.4[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3