检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qiwen Xue Jing Wang Yiqian He Haitian Yang Xiuyun Du
机构地区:[1]School of civil and safety engineering, Dalian Jiaotong University, Dalian 116028, China [2]State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, DaIian 116024, China [3]School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China
出 处:《Acta Mechanica Solida Sinica》2018年第4期459-469,共11页固体力学学报(英文版)
摘 要:The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi- analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved.The numerical solutions for uncertain viscoelastic problems have important theo- retical and practical significance. The paper develops a new approach by combining the scaled boundary finite element method (SBFEM) and fuzzy arithmetic. For the viscoelastic problems with zero uncertainty, the SBFEM and the temporally piecewise adaptive algorithm is employed in the space domain and the time domain, respectively, in order to provide an accurate semi- analytical boundary-based approach and to ensure the accuracy of discretization in the time domain with different sizes of time step at the same time. The fuzzy arithmetic is used to address the uncertainty analysis of viscoelastic material parameters, and the transformation method is used for computation with the advantages of effectively avoiding overestimation and reducing the computational costs. Numerical examples are provided to test the performance of the proposed method. By comparing with the analytical solutions and the Monte Carlo method, satisfactory results are achieved.
关 键 词:VISCOELASTICITY Uncertainty Scaled boundary finite element Fuzzy arithmetic
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74