基于雷诺应力模型的平衡大气边界层模拟  被引量:3

Numerical Simulation of Equilibrium Atmosphere Boundary Layer Based on Reynolds Stress Equation Model

在线阅读下载全文

作  者:李维勃 王国砚[1] LI Weibo;WANG Guoyan(School of Aerospace Engineering and Applied Mechanics,Tongji University,Shanghai 200092,China)

机构地区:[1]同济大学航空航天与力学学院,上海200092

出  处:《力学季刊》2018年第3期593-601,共9页Chinese Quarterly of Mechanics

摘  要:基于雷诺应力湍流模型(简称RSM模型),研究了平衡大气边界层风场数值模拟问题.假设流体不可压,且不计雷诺应力输运方程中的对流项、浮力产生项、系统旋转产生项和扩散项,在准各向同性的条件下,推导出RSM模型湍动能k的表达式是标准k-ε模型k常数表达式的0.893倍.考虑k沿高度变化的修正,根据在标准k-ε模型中满足水平均匀性的湍流来流边界条件,提出在RSM模型中产生平衡大气边界层的湍流来流边界条件.基于空风洞的数值模拟结果表明,与工程上常用的湍流来流边界条件相比,基于本文提出的湍流来流边界条件得到的风场水平均匀性更优,且在整个流域内,得到的雷诺应力剖面更合适.从而验证了该湍流来流边界条件的适用性.Numerical simulation of wind fields meeting the requirement of equilibrium atmosphere boundary layer is studied in this paper, based on Reynolds stress equation model (RSM). The result shows that turbulent kinetic energy k of RSM model is 0.893 times of k constant expression in standard k-c model under the quasi-isotropic assumption and fluid incompressibility assumption, with convection term, buoyancy term, system rotation term and diffusion term neglected in Reynolds stress transport equation. Considering the correction of changes of k along the height, the inflow turbulence boundary condition in the RSM model which produce equilibrium atmosphere boundary layer is proposed in this paper, based on the inflow turbulence boundary condition meeting the requirement of horizontal homogeneity in the standard k-e model. The results of the numerical simulation of an empty flow field show that the horizontal homogeneity of the wind field proposed in this paper based on the inflow turbulent boundary conditions is better, and the Reynolds stress profile in the whole calculation domain obtained in this paper is more suitable, compared with the inflow turbulent boundary conditions commonly used in engineering. Therefore, the applicability of the inflow turbulence boundary condition proposed in this paper is validated.

关 键 词:计算风工程 平衡大气边界层 数值模拟 雷诺应力 雷诺应力湍流模型 

分 类 号:O357.5[理学—流体力学] TU973.213[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象