检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈勇[1] 董家齐[1,2] 徐红兵[1] Shen Yong;Dong Jia-Qi;Xu Hong-Bing(Southwestern Institute of Physics,Chengdu 610041,China;Institute for Fusion Theory and Simulation,Zhefiang Universtiy,Hangzhou 310013,China)
机构地区:[1]核工业西南物理研究院,成都610041 [2]浙江大学聚变理论与模拟中心,杭州310013
出 处:《物理学报》2018年第19期200-209,共10页Acta Physica Sinica
基 金:国家重点研发项目(批准号:2017YFE0300405);国家自然科学基金(批准号:11475057);四川省科技项目(批准号:2016JY0196)资助的课题~~
摘 要:托卡马克实验发现,在不同参数条件下,等离子体能量约束经验定标律会有或大或小的修正.为解释这种修正现象发生的原因,应用回旋动理学方法,对含重(钨)杂质等离子体离子温度梯度(ITG)(包括杂质模)湍流输运的同位素效应进行了数值研究.结果表明钨杂质效应极大地修改了同位素定标律和有效电荷效应.随着杂质离子电荷数Z和电荷集中度f_z的变化,同位素定标律在较大范围内变化. ITG模最大增长率定标大约为M_i^(-0.48→-0.12),杂质模的定标为M_i^(-0.46→-0.3),其中, M_i表示主离子质量数.在ITG模湍流中,有效电荷数越大,关于M_i的拟合指数偏离-0.5越远,表现为同位素质量依赖减弱.在两种模中,杂质电荷集中度越大,同位素质量依赖越弱.研究了杂质效应使定标关系发生偏离的原因,证实杂质种类、杂质电荷数和杂质浓度的不同,是引起同位素质量依赖发生改变的重要原因.结果证实并解释了不同参数条件下托卡马克同位素定标的差异性.研究成果可以为ITER实验安排及杂质相关输运实验中选择装置材料、工作气体和设置其他参数提供理论参考.Tokamak experiments show that the plasma empirical energy confinement scaling law varies with plasma ion mass(Ai) in a certain range under conditions of different plasma parameters or different devices. In order to understand such a modification of the empirical energy confinement scaling law, the isotope mass dependence of ion temperature gradient(ITG, including impurity modes) turbulence driven transport in the presence of tungsten impurity ions in tokamak plasma is studied by employing the gyrokinetic theory. The effect of heavy(tungsten) impurity ions on ITG and impurity mode is revealed to modify significantly the isotope mass dependence and effective charge effect. As the charge number of impurity ions(Z) or impurity charge concentration(f_z) changes, the theoretical scaling law of ITG turbulence transport varies substantially in a relatively large range. The maximum growth rate of ITG mode scales as M_i^(-0.48→-0.12), whilst that of impurity mode scales as M_i^(-0.46→-0.3). Here, Mi is the mass number of primary ion in the plasma. In both cases the fitting index with Mi deviates further away from-0.5 when impurity charge concentration fz increases. The isotope mass dependence of ITG turbulence gradually weakens when the effective charge number Z_(eff) increases. The isotope mass dependence of impurity mode turbulence also weakens with Z_(eff)increasing for the same impurity ion charge number(Z). In contrast, the isotope mass dependence gradually strengthens with effective charge number Z_(eff)increasing for the same impurity charge concentration(fz). On average, the maximum growth rates of impurity mode scale roughly as γ_(max) ~M_i^(0.35)Z_(eff)^(1.5)and γ_(max) ~M_i^(-0.4)Z _(eff)~1, respectively, for Z_(eff)≤3 and Z_(eff) 3. The reason for the deviation of isotope scaling law from the normal case is investigated deliberately, and it is demonstrated that the isotope scaling index deviates from-0.5 more or less
分 类 号:TL631.24[核科学技术—核技术及应用] O533[理学—等离子体物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200