检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘鹏 赵慧含[3] 仰彦妍 景江波 魏卉子 丁恩杰 LIU Peng;ZHAO Huihan;YANG Yanyan;JING Jiangbo;WEI Huizi;DING Enjie(The National Joint Engineering Laboratory of lnternet Applied Technology of Mines,Xuzhou 221008,China;lnternet of Things Perception Mine Research Cemre,China University of Mining and Technology,Xuzhoa 221008,China;School of Information and Control Engineering,China Univenity of Mining and Technology,Xuzhou 221116,China)
机构地区:[1]矿山互联网应用技术国家地方联合工程实验室,江苏徐州221008 [2]中国矿业大学物联网(感知矿山)研究中心,江苏徐州221008 [3]中国矿业大学信息与控制工程学院,江苏徐州221116
出 处:《煤炭科学技术》2018年第8期16-23,共8页Coal Science and Technology
基 金:国家重点研发计划资助项目(2017YFC0804401;2017YFC0804409)
摘 要:基于矿山安全环境分析和事故危险源理论,利用本体语言OWL构建了矿山危险源本体,并结合与瓦斯爆炸事故的内在联系,构建了瓦斯爆炸事故树本体。继而通过设计本体推理工具的自定义规则,实现了从根源危险源到状态危险源的推理,同时根据瓦斯爆炸事故树本体实现了顶上事件发生概率的计算。提出的矿山安全领域本体构建及推理方法,可用于瓦斯爆炸事故预警的辅助决策。试验结果表明,构建的矿山危险源本体可实现从根源危险源到状态危险源的正确推理,并可根据瓦斯爆炸事故树本体自下而上计算顶上事件发生概率,验证了利用OWL本体推理辅助预测瓦斯爆炸事故的有效性。Based on mine safety environment anlalysis and danger source theory,coal mine danger source ontology by OWL is constructed.Exploring the intrinsic relation between mine danger source and gas explosion accident,we construct gas explosion fault tree. Moreover,by designing reasoning rules,we realize the reasoning process from the root danger source ontology to the status danger source ontology.Finally,from bottom to top,based on the basic events status,the probability of the top accident event is calculated according to the constructed gas explosion fault tree ontology.The proposed construction and reasoning methods of mine accident ontology can be used for assistant decision-making on gas explosion accident warning.The experimental results show that the constructed mine accident ontology can correctly implement the reasoning from the root danger source to the status danger source. Meanwhile,the probability of top accident event of the gas explosion fault tree ontology is exactly calculated.These results verify the effectiveness of OWL ontology technology in predicting coal mine gas explosion accidents.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15