Novel continuous single-step synthesis of nitrogen-modified TiO_2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light  被引量:4

Novel continuous single-step synthesis of nitrogen-modified TiO_2 by flame spray pyrolysis for photocatalytic degradation of phenol in visible light

在线阅读下载全文

作  者:Thirupathi Boningari Siva Nagi Reddy Inturi Makram Suidan Panagiotis G.Smirniotis 

机构地区:[1]Chemical Engineering Program, College of Engineering & Applied Science, University of Cincinnati [2]Environmental Engineering, College of Engineering & Applied Science, University of Cincinnati

出  处:《Journal of Materials Science & Technology》2018年第9期1494-1502,共9页材料科学技术(英文版)

基  金:the U.S. EPA/Pegasus contract (contract number EP-C-11-006) for financial support of this work through the scholarship to Siva Nagi Reddy Inturi

摘  要:A novel rapid and continuous process has developed for the synthesis of nitrogen-doped TiO2(N-TiO2)with flame spray pyrolysis(FSP) method. The nitrogen incorporation into TiO2 was achieved by a facile modification(addition of dilute nitric acid) in the precursor for the synthesis. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The doping of nitrogen into the TiO2 was confirmed by X-ray photoelectron spectroscopy(XPS) and energy dispersive X-ray(EDX) spectroscopy. The UV-vis spectra of the modified catalysts(with primary N source) exhibited band-gap narrowing for 4 N-TiO2 with band gap energy of 2.89 eV, which may be due to the presence of nitrogen in TiO2 structure. The introduction of secondary N-source(urea) into TiO2 crystal lattice results in additional reduction of the band gap energy to 2.68 eV and shows a significant improvement of visible light absorption. The N-TiO2 nanoparticles modified by using secondary N-source showed significant photocatalytic activity under visible light much higher than TiO2. The higher activity is attributed to the synergetic interaction of nitrogen with the TiO2 lattice. The lowering of the band-gap energy for the flame made N-doped TiO2 materials implies that the nitrogen doping in TiO2 by aerosol method is highly effective in extending the optical response of TiO2 in the visible region. The nitrogen atomic percentage has increased monotonically(0.09%-0.15%)with the increase in primary nitrogen source(nitric acid), and significantly boosted to 0.97% when secondary nitrogen source(urea) was introduced. The highest rate of phenol degradation was obtained for catalysts with secondary N source due to increase in N content in the catalyst.A novel rapid and continuous process has developed for the synthesis of nitrogen-doped TiO2(N-TiO2)with flame spray pyrolysis(FSP) method. The nitrogen incorporation into TiO2 was achieved by a facile modification(addition of dilute nitric acid) in the precursor for the synthesis. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The doping of nitrogen into the TiO2 was confirmed by X-ray photoelectron spectroscopy(XPS) and energy dispersive X-ray(EDX) spectroscopy. The UV-vis spectra of the modified catalysts(with primary N source) exhibited band-gap narrowing for 4 N-TiO2 with band gap energy of 2.89 eV, which may be due to the presence of nitrogen in TiO2 structure. The introduction of secondary N-source(urea) into TiO2 crystal lattice results in additional reduction of the band gap energy to 2.68 eV and shows a significant improvement of visible light absorption. The N-TiO2 nanoparticles modified by using secondary N-source showed significant photocatalytic activity under visible light much higher than TiO2. The higher activity is attributed to the synergetic interaction of nitrogen with the TiO2 lattice. The lowering of the band-gap energy for the flame made N-doped TiO2 materials implies that the nitrogen doping in TiO2 by aerosol method is highly effective in extending the optical response of TiO2 in the visible region. The nitrogen atomic percentage has increased monotonically(0.09%-0.15%)with the increase in primary nitrogen source(nitric acid), and significantly boosted to 0.97% when secondary nitrogen source(urea) was introduced. The highest rate of phenol degradation was obtained for catalysts with secondary N source due to increase in N content in the catalyst.

关 键 词:Flame spray pyrolysis(FSP) TITANIA (TiO2) Visible-light-induced Liquid phase Phenol photodegradation 

分 类 号:TB2[一般工业技术—工程设计测绘]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象