On Word Equations Originated from Discrete Dynamical Systems Related to Antisymmetric Cubic Maps with Some Applications  

On Word Equations Originated from Discrete Dynamical Systems Related to Antisymmetric Cubic Maps with Some Applications

在线阅读下载全文

作  者:Elias ABBOUD 

机构地区:[1]The Academic Arab Institute,Faculty of Education,Beit Berl College

出  处:《Acta Mathematica Sinica,English Series》2018年第11期1663-1676,共14页数学学报(英文版)

基  金:supported by Beit Berl College

摘  要:In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we characterize all the cases for which (β1β1) = (β2β) where β1 and β2 are the greatest words in 〈〈β31〉〉 and 〈〈β32〉〉 of M(n).In this article, we solve some word equations originated from discrete dynamical systems related to antisymmetric cubic map. These equations emerge when we work with primitive and greatest words. In particular, we characterize all the cases for which (β1β1) = (β2β) where β1 and β2 are the greatest words in 〈〈β31〉〉 and 〈〈β32〉〉 of M(n).

关 键 词:Word equation broken alternating word primitive word greatest word parity-lexicographic order 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象