Semistability of Frobenius Direct Image of Representations of Cotangent Bundles  

Semistability of Frobenius Direct Image of Representations of Cotangent Bundles

在线阅读下载全文

作  者:Ling Guang LI 

机构地区:[1]School of Mathematical Sciences,Tongji University

出  处:《Acta Mathematica Sinica,English Series》2018年第11期1677-1691,共15页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant No.11501418);Shanghai Sailing Program(Grant No.15YF1412500)

摘  要:Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle on X, and ρ:GLn(k) → GLm(k) a rational GLn(k)-representation of degree at most d such that ρ maps the radical R(GLn(k)) of GLn(k) into the radical R(GLm(k)) of GLm(k). We show that if FXN*(E) is semistable for some integer N ≥ max0 〈 r 〈 m (rm) · logp(dr), then the induced rational GLm(k)-bundle E(GLm(k)) is semistable. As an application, if dim X=n, we get a sufficient condition for the semistability of Frobenius direct image FX*(ρ*(ΩX1)), where ρ*(ΩX1) is the vector bundle obtained from ΩX1 via the rational representation ρ.Let k be an algebraically closed field of characteristic p 〉 0, X a smooth projective variety over k with a fixed ample divisor H, FX:X → X the absolute Frobenius morphism on X. Let E be a rational GLn(k)-bundle on X, and ρ:GLn(k) → GLm(k) a rational GLn(k)-representation of degree at most d such that ρ maps the radical R(GLn(k)) of GLn(k) into the radical R(GLm(k)) of GLm(k). We show that if FXN*(E) is semistable for some integer N ≥ max0 〈 r 〈 m (rm) · logp(dr), then the induced rational GLm(k)-bundle E(GLm(k)) is semistable. As an application, if dim X=n, we get a sufficient condition for the semistability of Frobenius direct image FX*(ρ*(ΩX1)), where ρ*(ΩX1) is the vector bundle obtained from ΩX1 via the rational representation ρ.

关 键 词:SEMISTABILITY principal bundle Probenius morphism cotangent bundle 

分 类 号:O187.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象