机构地区:[1]Photonics Research Group,Ghent University-IMEC,Technologiepark-Zwijnaarde 15,B-9052 Ghent,Belgium [2]Center for Nano-and Biophotonics(NB-Photonics),Ghent University,B-9052 Ghent,Belgium [3]Walter Schottky Institut,Technische Universitat Munchen,Am Coulombwall 4,85748 Garching,Germany [4]IMEC,Kapeldreef 75,Leuven B-3001,Belgium
出 处:《Photonics Research》2018年第9期858-866,共9页光子学研究(英文版)
基 金:H2020 European Research Council(ERC)(FireSpec);INTERREG(Safeside)
摘 要:Heterogeneously integrating III-V materials on silicon photonic integrated circuits has emerged as a promising approach to make advanced laser sources for optical communication and sensing applications. Tunable semiconductor lasers operating in the 2–2.5 μm range are of great interest for industrial and medical applications since many gases(e.g., CO_2, CO, CH_4) and biomolecules(such as blood glucose) have strong absorption features in this wavelength region. The development of integrated tunable laser sources in this wavelength range enables low-cost and miniature spectroscopic sensors. Here we report heterogeneously integrated widely tunable III-V-on-silicon Vernier lasers using two silicon microring resonators as the wavelength tuning components. The laser has a wavelength tuning range of more than 40 nm near 2.35 μm. By combining two lasers with different distributed Bragg reflectors, a tuning range of more than 70 nm is achieved. Over the whole tuning range, the side-mode suppression ratio is higher than 35 dB. As a proof-of-principle, this III-V-on-silicon Vernier laser is used to measure the absorption lines of CO. The measurement results match very well with the high-resolution transmission molecular absorption(HITRAN) database and indicate that this laser is suitable for broadband spectroscopy.Heterogeneously integrating III-V materials on silicon photonic integrated circuits has emerged as a promising approach to make advanced laser sources for optical communication and sensing applications. Tunable semi- conductor lasers operating in the 2-2.5 μm range are of great interest for industrial and medical applica- tions since many gases (e.g., CO2, CO, CH4) and biomolecules (such as blood glucose) have strong absorption features in this wavelength region. The development of integrated tunable laser sources in this wavelength range enables low-cost and miniature spectroscopic sensors. Here we report heterogeneously integrated widely tunable Ⅲ-V-on-silicon Vernier lasers using two silicon microring resonators as the wavelength tuning components. The laser has a wavelength tuning range of more than 40 nm near 2.35 μm. By combining two lasers with different distributed Bragg reflectors, a tuning range of more than 70 nm is achieved. Over the whole tuning range, the side-mode suppression ratio is higher than 35 dB. As a proof-of-principle, this Ⅲ-V-on-silicon Vernier laser is used to measure the absorption lines of CO. The measurement results match very well with the high-resolution transmission molecular absorption (HITRAN) database and indicate that this laser is suitable for broadband spectroscopy. 2018 Chinese Laser Press
分 类 号:TN402[电子电信—微电子学与固体电子学] TN92
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...