Hollow TiO_2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage,carbonate-doping and the induced Ti^(3+)  被引量:3

Hollow TiO_2 spheres with improved visible light photocatalytic activity synergistically enhanced by multi-stimulative: Morphology advantage,carbonate-doping and the induced Ti^(3+)

在线阅读下载全文

作  者:Guoliang Li Chunyang Liao Guibin Jiang 

机构地区:[1]State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences

出  处:《Journal of Environmental Sciences》2018年第10期153-165,共13页环境科学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.21677159,21522706,21677167);the National Basic Research Program of China(2011CB936001);the Thousand Young Talents Program of China

摘  要:Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m^2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti^(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.Great efforts have been devoted to improve the photocatalytic activity of TiO2 in the visible light region. Rational design of the external structure and adjustment of intrinsic electronic status by impurity doping are two main effective ways to achieve this purpose. A facile onepot synthetic approach was developed to prepare C-doped hollow TiO2 spheres, which simultaneously realized these advantages. The synthesized TiO2 exhibits a mesoporous hollow spherical structure composed of fine nanocrystals, leading to high specific surface area(~180 m^2/g) and versatile porous texture. Carbonate-doping was achieved by a postthermal treatment at a relatively low temperature(200°C), which makes the absorption edge red-shifted to the visible region of the solar spectrum. Concomitantly, Ti^(3+) induced by C-doping also functions in improving the visible-light photocatalytic activity by reducing the band gap. There exists a synergistic effect from multiple stimulatives to enhance the photocatalytic effect of the prepared TiO2 catalyst. It is not out of expectation that the asprepared C-doped hollow TiO2 spheres exhibits an improved photocatalytic activity under visible light irradiation in organic pollutant degradation.

关 键 词:Hollow TiO2 sphere CARBONATE Ti^3+ Visible light PHOTO-DEGRADATION Synergistic enhancement 

分 类 号:X50[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象