检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianbing Liu Zhengang Wang Shuai Zhao Baoquan Ding
机构地区:[1]CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China [2]University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Nano Research》2018年第10期5017-5027,共11页纳米研究(英文版)
基 金:This work is supported by the National Natural Science Foundation of China (Nos. 21573051, 21708004, and 51761145044), Sience Fund of Creative Research Groups of the National Natural Science Foundation of China (No. 21721002), the National Basic Research Program of China (No. 2016YFA0201601), Beijing Municipal Science & Technology Commission (No. Z161100000116036), Key Research Program of Frontier Sciences, CAS, Grant QYZDB-SSW-SLH029, CAS Interdisciplinary Innovation Team, and K. C. Wong Education Foundation.
摘 要:Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.Nucleic acid nanotechnology has been developed to be a promising strategy to construct various nano-biomaterials with structural programmability, spatial addressability, and excellent biocompatibility. Self-assembled nucleic acid nanostructures have been employed in a variety of biomedical applications, such as bio-imaging, diagnosis, and therapeutics. In this manuscript, we will review recent progress in the development of multifunctional nucleic acid nanostructures as gene drug delivery vehicles. Therapeutic systems based on RNA interference (RNAi), clustered regularly interspaced short palindromic repeat associated proteins 9 system (CRISPR/Cas9) genome editing, gene expression, and CpG-based immunostimulation will be highlighted. We will also discuss the challenges and future directions of nucleic acid nanotechnology in biomedical research.
关 键 词:nucleic acid nanostructure nucleic acid drug gene therapy drug delivery multifunctional nanomaterials
分 类 号:Q78[生物学—分子生物学] TB383[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.71