检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于谨凯[1] 刘云昊 Yu Jinkai;Liu Yunhao
机构地区:[1]中国海洋大学经济学院
出 处:《中国海洋经济》2016年第2期39-52,共14页Marine Economy in China
基 金:国家自然科学基金项目“海域承载力视角下海洋渔业空间布局优化的模型及应用”(71273247);国家自然科学基金项目“基于空间多标准分析的我国海水养殖空间布局优化决策:方法及应用”(71673259);教育部人文社科重点研究基地重大项目“我国海洋产业空间布局优化研究”(15JJDZONGHE024)阶段性成果
摘 要:本文选取2005—2014年中国沿海11省份海洋捕捞业区位熵值,构建面板单位根检验模型,分析海洋捕捞业集群化的时空分异特征。结果表明:沿海11省份海洋捕捞业集群化呈现橄榄型的空间分异特征;2005~2014年各省份海洋捕捞业集聚发展平稳,呈现均匀发展的时间特征,区位熵值波动小,集聚水平没有明显的增强或者减弱趋势。广西、广东、辽宁的单位根检测结果为平稳,表明其海洋捕捞业与区域经济发展相协调;海南、浙江、江苏、河北、天津、福建、山东、上海等8个省份海洋捕捞业发展水平超越或滞后于本地区经济发展,产业集聚格局不断调整。The article analyses the differentiation of marine fishing industry's agglomeration with time and in space by establishing the panel data's unit root test model, in which 11 coastal provinces'location entropy in marine fishing industry were selected. It turns out that, on average, the location entropy of Hainan, Fujian and Tianjin are 15.8, 4.4 and 0. 257, while location entropy of Liaoning, Hebei, Shandong, Jiangsu, Shanghai, Zhejiang, Guangdong, Guangxi are from 0.3 to 3, which presents an olive shaped structure; the location entropy of 11 provinces shows slight fluctuations from 2005 to 2014, which means the agglomeration level has no obvious trend of increase or decrease while marine fishing industry's agglomeration level develops steadily with time. The unit root test results of Guangxi, Guangdong, Liaoning are stable, which shows marine fishing industry's growth coordinates with local economic development; results of Hainan, Zhejiang, Jiangsu, Hebei, Tianjin, Fujian, Shandong, Shanghai are unstable, which shows the growth of the eight provinces'marine fishing industry exceeds or lags behind the development of local economy. In other words, the agglomeration pattern in the 8 provinces adjusted with time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171