检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李翀[1] 刘利娜 刘学敏[1] 张士波 LI Chong;LIU Li-Na;LIU Xue-Min;ZHANG Shi-Bo(Computer Network Information Center,University of Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院计算机网络信息中心,北京100190 [2]中国科学院大学,北京100049
出 处:《计算机系统应用》2018年第10期91-98,共8页Computer Systems & Applications
基 金:中国科学院信息化专项(Y647021224)~~
摘 要:为了满足大型互联网应用对高并发访问、快速响应、动态扩展、易维护性等需求,本文基于Redis 4.0设计并实现了一种Redis Cluster分布式缓存系统,集成了可视化开源工具CacheCloud对该系统进行实时监控和高效管理,基于官方Redis-Bechmark进行了QPS性能测试,并与Codis分布式缓存系统进行了对比.实验结果表明Redis Cluster各功能高效运作,性能优越,在并发访问数10 000以上时响应时间明显优于Codis.In order to meet the growing demands for high concurrency, quick response, dynamical scaling, and maintainability in larger-scale internet applications, in this research work, a distributed cluster cache system based on Redis 4.0 has been implemented, which the data can be distributed and scaled into different nodes so the system's linear scalability, load balancing, concurrency, data throughput, and responsiveness can be optimized. The open source tool called CacheCloud is integrated into it so the cluster can be efficiently managed and monitored in real time. The results show that the system reaches high performance and response time of using Query Per Second(QPS) on Redis Cluster is much faster than that on Codis after 10 000 concurrent accesses.
关 键 词:分布式缓存 分片 REDIS CLUSTER CacheCloud 每秒查询率(QPS)
分 类 号:TP333[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.146.235