检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shaohua Xiang Xixiang Zhu Kehui Song 向少华;朱喜香;宋克慧(School of Mechanical,Optoelectronics and Physics,Huaihua University)
机构地区:School of Mechanical,Optoelectronics and Physics,Huaihua University,Huaihua 418008,China
出 处:《Chinese Physics B》2018年第10期181-189,共9页中国物理B(英文版)
基 金:Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2214);the Key Project Foundation of the Education Department of Hunan Province,China(Grant No.14A114
摘 要:We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.
关 键 词:NON-GAUSSIANITY CUMULANTS squeezed number states DECOHERENCE
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.124.77