Numerical study of cavitating flow in orifices and its effect on spray characteristics  被引量:2

Numerical study of cavitating flow in orifices and its effect on spray characteristics

在线阅读下载全文

作  者:Morteza Ghorbani 

机构地区:[1]Mechatronics Engineering Program, Faculty of Engineering and Natural Science, Sabanci University [2]Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology

出  处:《Journal of Hydrodynamics》2018年第5期908-919,共12页水动力学研究与进展B辑(英文版)

摘  要:The bubbly flow regime inside orifices has significant effects on several applications, and studying its trend along an orifice could be helpful in identifying the flow mechanism in various situations. The flow regime inside an orifice depends on the situation which has been specified for the orifice. Orifice geometry has a considerable effect on bubbly flow in injectors. Meanwhile, spray characteristics are influenced by the fuel flow inside an orifice, which has strong effects on the mixture of fuel-air. In this study, spray characteristics are studied for different values of the orifice angle. The cavitation phenomenon which occurs inside an orifice varies in intensity and patterns at different angles of the orifice and consequently has diverse effects on spray characteristics. The governing equations are solved by the SIMPLE algorithm. The spray flow is modeled by the discrete droplet method(DDM), the droplet breakup is modeled by the WAVE model, and the primary breakup is modeled by the DIESEL BREAK UP model. In order to generate cavitation phenomenon inside orifices and investigate its effect on spray characteristics, the angle of orifice with respect to the injector body is varied and the problem is studied for different angles of orifice.The bubbly flow regime inside orifices has significant effects on several applications, and studying its trend along an orifice could be helpful in identifying the flow mechanism in various situations. The flow regime inside an orifice depends on the situation which has been specified for the orifice. Orifice geometry has a considerable effect on bubbly flow in injectors. Meanwhile, spray characteristics are influenced by the fuel flow inside an orifice, which has strong effects on the mixture of fuel-air. In this study, spray characteristics are studied for different values of the orifice angle. The cavitation phenomenon which occurs inside an orifice varies in intensity and patterns at different angles of the orifice and consequently has diverse effects on spray characteristics. The governing equations are solved by the SIMPLE algorithm. The spray flow is modeled by the discrete droplet method(DDM), the droplet breakup is modeled by the WAVE model, and the primary breakup is modeled by the DIESEL BREAK UP model. In order to generate cavitation phenomenon inside orifices and investigate its effect on spray characteristics, the angle of orifice with respect to the injector body is varied and the problem is studied for different angles of orifice.

关 键 词:CAVITATION iinjector angle MICROCHANNEL SPRAY 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象