The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam  被引量:13

三峡大坝下游水位变化与河道形态调整关系研究(英文)

在线阅读下载全文

作  者:杨云平 张明进 孙昭华 韩剑桥 王建军 

机构地区:[1]State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University [2]Key Laboratory of Engineering Sediment, Tianjin Research Institute for Water Transport Engineering,Ministry of Transport [3]Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University

出  处:《Journal of Geographical Sciences》2018年第12期1975-1993,共19页地理学报(英文版)

基  金:National Key Research and Development Program of China,No.2016YFC0402106;National Natural Science Foundation of China,No.51579123,No.51579185,No.51339001;Supported by the Open Research Fund Program of State Key Laboratory of Water Resources and Hydropower Engineering Science,No.2016HLG02;Fundamental Research Funds for Central Welfare Research Institutes,No.TKS160103

摘  要:In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment of the dam. The results highlight the following facts:(1) for the same flow, the low water level decreased, flood water level changed little, lowest water level increased, and highest water level decreased at the hydrological stations in the downstream of the dam;(2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls;" the ratio of low-water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations between different impoundment stages;(3) the low water level decrease slowed down during the channel erosion in the Upper Jingjiang reach and reaches upstream but sped up in the Lower Jingjiang reach and reaches downstream; measures should be taken to prevent the decrease in the channel water level;(4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the low water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of channel and waterway regulations; and(5) the geometry of the channels above bankfulls did not significantly change; however, the comprehensive channel resistance increased under the combined effects of riverbed coarsening, beach vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out.In this study, data measured from 1955–2016 were analysed to study the relationship between the water level and river channel geometry adjustment in the downstream of the Three Gorges Dam(TGD) after the impoundment of the dam. The results highlight the following facts:(1) for the same flow, the low water level decreased, flood water level changed little, lowest water level increased, and highest water level decreased at the hydrological stations in the downstream of the dam;(2) the distribution of erosion and deposition along the river channel changed from "erosion at channels and deposition at bankfulls" to "erosion at both channels and bankfulls;" the ratio of low-water channel erosion to bankfull channel erosion was 95.5% from October 2002 to October 2015, with variations between different impoundment stages;(3) the low water level decrease slowed down during the channel erosion in the Upper Jingjiang reach and reaches upstream but sped up in the Lower Jingjiang reach and reaches downstream; measures should be taken to prevent the decrease in the channel water level;(4) erosion was the basis for channel dimension upscaling in the middle reaches of the Yangtze River; the low water level decrease was smaller than the thalweg decline; both channel water depth and width increased under the combined effects of channel and waterway regulations; and(5) the geometry of the channels above bankfulls did not significantly change; however, the comprehensive channel resistance increased under the combined effects of riverbed coarsening, beach vegetation, and human activities; as a result, the flood water level increased markedly and moderate flood to high water level phenomena occurred, which should be considered. The Three Gorges Reservoir effectively enhances the flood defense capacity of the middle and lower reaches of the Yangtze River; however, the superposition effect of tributary floods cannot be ruled out.

关 键 词:low water level flood water level riverbed adjustment cause analysis Three Gorges Dam middle and lower reaches of the Yangtze River 

分 类 号:TV147.5[水利工程—水力学及河流动力学] TV12

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象