机构地区:[1]Departamento de Ingenierias Quimica, Electronica y Biomedica, Division de Ciencias e Ingenierlas, Universidad de Guanajuato (UG) Campus Leon, Loma del Bosque 103, Leon, Gto. 37150 (Mexico) [2]Laboratorio de Biotecnologla Vegetal, Instituto de Biotecnologia, Universidad del Papaloapan, Tuxtepec, Oaxaca 68333 (Mexico) [3]programa en Sustentabilidad de los Recursos Naturales y Eneryla, Cinvestav Saltillo, Industria Metalurgica 1062, Parque Industrial Saltillo-Ramos-Arizpe, Ramos Arizpe, Coahuila 25900 (Mexico) [4]CONACYT, Unidad de Ciencias del Agua (UCIA), Centro de Investigacion Cientifica de Yucatan, A.C., Cancdn, Quintana Roo 77500 (Mexico) [5]Center for the Environmental Implications of Nanotechnology, University of California at Los Angeles- University of Texas at El Paso, 500 W University Ave, El Paso 79968 (USA) [6]CONACYT, Universidad de Guanajuato, Loma del Bosque 103, Leon, Guanajuato 37150 (Mexico)
出 处:《Pedosphere》2018年第5期697-712,共16页土壤圈(英文版)
基 金:the University of Guanajuato, Mexico and the Program for Teacher-Professional Development (PRODEP), Guanajuato of Mexico (No. NPTC UG-PTC-571) for financial support
摘 要:In recent years,there has been an increasing interest in finding sustainable strategies for the efficient removal of contaminants from soils.The objective of this review is to examine the biochemical principles of specific genetic modifications in plants,their applications in the field for specific contaminants as phytotechnologies,and their international regulation.In addition,the review presents some biological aspects of rhizosphere-related phenomena,the interactions of organic and inorganic pollutants with plants,and the performance of the phytotechnologies across the continents.During the last few decades,at least eight genera of genetically modified plants(GMPs)have been tested and used for soil remediation with outstanding results.Arabidopsis,Nicotiana,and Oryza are the plant genera most widely studied.Specific plant genes such as metal transporters,chelators,metallothioneins,phytochelatins,and oxygenases have been transferred to plants to improve the elimination of contaminants in soil.We discuss some important aspects of gene manipulation and its application for removal of diverse contaminants.A key challenge faced by phytotechnologies is the final disposal of the generated biomass,from a safety aspect.We argue that the commercial success of phytotechnologies depends on the generation of valuable biomass on contaminated land and its use for bioenergy generation.The use of such technologies would promote a broader understanding of the importance of plants,especially GMPs,in the environment and their contribution to environmental sustainability.In recent years,there has been an increasing interest in finding sustainable strategies for the efficient removal of contaminants from soils.The objective of this review is to examine the biochemical principles of specific genetic modifications in plants,their applications in the field for specific contaminants as phytotechnologies,and their international regulation.In addition,the review presents some biological aspects of rhizosphere-related phenomena,the interactions of organic and inorganic pollutants with plants,and the performance of the phytotechnologies across the continents.During the last few decades,at least eight genera of genetically modified plants(GMPs)have been tested and used for soil remediation with outstanding results.Arabidopsis,Nicotiana,and Oryza are the plant genera most widely studied.Specific plant genes such as metal transporters,chelators,metallothioneins,phytochelatins,and oxygenases have been transferred to plants to improve the elimination of contaminants in soil.We discuss some important aspects of gene manipulation and its application for removal of diverse contaminants.A key challenge faced by phytotechnologies is the final disposal of the generated biomass,from a safety aspect.We argue that the commercial success of phytotechnologies depends on the generation of valuable biomass on contaminated land and its use for bioenergy generation.The use of such technologies would promote a broader understanding of the importance of plants,especially GMPs,in the environment and their contribution to environmental sustainability.
关 键 词:BIOENERGY CONTAMINANTS gene manipulation phytotechnology plant-microbe interaction regulatory policy soil pollu-tion soil remediation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...