Phase Retrieval of Real-valued Functions in Sobolev Space  

Phase Retrieval of Real-valued Functions in Sobolev Space

在线阅读下载全文

作  者:You Fa LI De Guang HAN 

机构地区:[1]College of Mathematics and Information Science, Guangxi University, Nanning 530004, P. R. China [2]Department of Mathematics, University of Central Florida, Orlando, FL 32816

出  处:《Acta Mathematica Sinica,English Series》2018年第12期1778-1794,共17页数学学报(英文版)

基  金:supported by Natural Science Foundation of China(Grant Nos.61561006 and11501132);Natural Science Foundation of Guangxi(Grant No.2016GXNSFAA380049);the support from NSF under the(Grant Nos.DMS-1403400 and DMS-1712602)

摘  要:The Sobolev space HS(Rd) with s 〉 d/2 contains many important functions such as the bandlimited or rational ones. In this paper we propose a sequence of measurement functions { φj^r,k}∈C H^-S(R^d) to the phase retrieval problem for the real-valued functions in H^s(R^d). We prove that any real-valued function f ∈ H^s (Rd) can be determined, up to a global sign, by the phaseless measurements {|( f, φj^r,k}|}. It is known that phase retrieval is unstable in infinite dimensional spaces with respect to perturbations of the measurement functions. We examine a special type of perturbations that ensures the stability for the phase-retrieval problem for all the real-valued functions in Hs(Rd) ∩ C1(Rd), and prove that our iterated reconstruction procedure guarantees uniform convergence for any function f ∈ Hs (Rd)∩ C1 (Rd) whose Fourier transform f is L1-integrable. Moreover, numerical simulations are conducted to test the efficiency of the reconstruction algorithm.The Sobolev space HS(Rd) with s 〉 d/2 contains many important functions such as the bandlimited or rational ones. In this paper we propose a sequence of measurement functions { φj^r,k}∈C H^-S(R^d) to the phase retrieval problem for the real-valued functions in H^s(R^d). We prove that any real-valued function f ∈ H^s (Rd) can be determined, up to a global sign, by the phaseless measurements {|( f, φj^r,k}|}. It is known that phase retrieval is unstable in infinite dimensional spaces with respect to perturbations of the measurement functions. We examine a special type of perturbations that ensures the stability for the phase-retrieval problem for all the real-valued functions in Hs(Rd) ∩ C1(Rd), and prove that our iterated reconstruction procedure guarantees uniform convergence for any function f ∈ Hs (Rd)∩ C1 (Rd) whose Fourier transform f is L1-integrable. Moreover, numerical simulations are conducted to test the efficiency of the reconstruction algorithm.

关 键 词:Sobolev space phase retrieval measurement function perturbation retrievable stability reconstruction stability. 

分 类 号:O174[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象