400 TW operation of Orion at ultra-high contrast  

400 TW operation of Orion at ultra-high contrast

在线阅读下载全文

作  者:Stefan Parker Colin Danson David Egan Stephen Elsmere Mark Girling Ewan Harvey David Hillier Dianne Hussey Stephen Masoero James McLoughlin Rory Penman Paul Treadwell David Winter Nicholas Hopps 

机构地区:[1]AWE plc, Aldermaston, Reading RG7 4PR, UK

出  处:《High Power Laser Science and Engineering》2018年第3期79-84,共6页高功率激光科学与工程(英文版)

摘  要:The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mrn thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J. The second-harmonic capability has been upgraded by taking two square 300 mmx 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.The Orion facility at the Atomic Weapons Establishment in the United Kingdom has the capability to operate one of its two 500 J, 500 fs short-pulse petawatt beams at the second harmonic, the principal reason being to increase the temporal contrast of the pulse on target. This is achieved post-compression, using 3 mm thick type-1 potassium dihydrogen phosphate crystals. Since the beam diameter of the compressed pulse is ~600 mm, it is impractical to achieve this over the full aperture due to the unavailability of the large aperture crystals. Frequency doubling was originally achieved on Orion using a circular sub-aperture of 300 mm diameter. The reduction in aperture limited the output energy to 100 J.The second-harmonic capability has been upgraded by taking two square 300 mm × 300 mm sub-apertures from the beam and combining them at focus using a single paraboloidal mirror, thus creating a 200 J, 500 fs, i.e., 400 TW facility at the second harmonic.

关 键 词:CONTRAST frequency conversion ultra-high intensity 

分 类 号:TN78[电子电信—电路与系统] TN24

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象