检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈隽[1] 巩书鑫 王红瑞[2,3] 俞淞[2,3] CHEN Jun;GONG Shu-xin;WANG Hong-rui;YU Song(South China Institute of Environmental Sciences,MEP,Guangzhou 510655,China;a.College of Water Science;2b.Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology,Beijing Normal University,Beijing 100875,China)
机构地区:[1]环境保护部华南环境科学研究所,广东广州510655 [2]北京师范大学水科学研究院,北京100875 [3]北京师范大学城市水循环与海绵城市技术北京市重点实验室,北京100875
出 处:《水电能源科学》2018年第11期30-33,共4页Water Resources and Power
基 金:国家自然科学基金项目(51479003;51279006)
摘 要:为探究模糊隶属度与集对联系数两种理论间的内在联系,分析了二者在概念、理论和适用性的异同,利用集对理论构造联系数模型与模糊数学思想构造隶属度函数,分别评价了黑龙江省水资源承载力现状。结果表明,集对理论与模糊数学理论在水资源系统分析中均有良好的效果。由于模糊性是排中率的破缺,模糊数学在不确定性的现状评价中更有优势;集对联系数可视为模糊隶属度的区间表达,可对评价对象进行简单分级,并能动态评价研究对象。This paper proposed to compare the fuzzy membership degree with the set pair number and analyzed the similarities and differences between the two in concept, theory and applicability. The set pair theory and the fuzzy mathe- matics were used to establish the membership function, and the current status of water resources carrying capacity in Hei- longjiang Province was evaluated. The results show that the set pair theory and fuzzy mathematics theory have a good effect in the analysis of water resources system. Because the ambiguity is the break of the rate of volley, fuzzy mathemat- ics has more advantages in the evaluation of the status quo of uncertainty. The set of pairs can be regarded as the interval expression of fuzzy membership, which can be easily graded and dynamically evaluate the study subjects.
关 键 词:模糊数学 集对分析 评价模型 水资源系统 不确定性
分 类 号:TV213.4[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.21.34.100