检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李映辉 钟平安[1] 钱睿智[2] 吴业楠 杨敏芝[1] LI Ying-hui;ZHONG Ping-an;QIAN Rui-zhi;WU Ye-nan;YANG Min-zhi(College of Hydrology and Water Resources,Hohai University,Nanjing 210098,China;Yangzhou Branch of Hydrology and Water Resources Survey Bureau of Jiangsu Province,Yangzhou 225002,China)
机构地区:[1]河海大学水文水资源学院,江苏南京210098 [2]江苏省水文水资源勘测局扬州分局,江苏扬州225002
出 处:《水电能源科学》2018年第11期51-55,共5页Water Resources and Power
基 金:国家重点研发计划(2017YFC0405606);国家自然科学基金项目(51579068)
摘 要:相似洪水动态识别是在大数据背景下弥补实时洪水预报预见期不足的有效途径,对于支撑防洪调度具有重要作用。由此,结合产汇流理论建立反映洪水形成发展的复杂多元动态事件集;采用动态时间弯曲算法改进了欧氏距离算法对相位的适应性;基于多元时间序列相似性原理构建了相似洪水动态识别方法。以池潭水库30场雨洪资料相对完备的洪水为例,对所提方法进行验证,结果表明该方法具有较好的洪水识别效果。With the background of big data, dynamic identification of similar flood appears to be an effective way to overcome the drawback of short forecast lead time in real-time flood forecast, which may provide useful information for flood control operation. Therefore, based on the runoff generation and routing theory, we established a complex multiva- riate dynamic event set which can reflect the formation and development of flood events. Dynamic time warping (DTW) algorithm was used to improve the phase adaptability of Euclidean distance algorithm. Then, a similar flood dynamic i- dentification method was established based on the similarity analysis theory of multiple time series. Taking the 30 rela- tively complete flood and rainfall data in Chitan reservoir as an example, the proposed method was verified. The results show that the proposed method has a good effect on flood dynamic identification.
关 键 词:相似洪水 动态识别 多元时间序列 动态时间弯曲算法
分 类 号:TV122[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15