面向大数据时代的美国联邦政府机构创新及职能扩展——以美国运输统计局为例  被引量:3

Institutional Innovation and Function Expansion of the U.S. Federal Government in the Era of Big Data —— A Case Study of U.S. Bureau of Transportation Statistics

在线阅读下载全文

作  者:何力武[1] 康磊 He Liwu;Kang Lei(School of Government,Sun Yat-Sen University,Guangzhou 510275;Staff at Uber Technologies Inc.,San Francisco,U.S.,941103)

机构地区:[1]中山大学政治与公共事务管理学院,粤港澳发展研究院,中国公共管理研究中心,当代中国政治研究中心,副研究员广州510275 [2]美国优步公司,数据科学家旧金山94103

出  处:《中国行政管理》2018年第11期127-132,共6页Chinese Public Administration

摘  要:大数据对政府的机构创新及职能扩展既提出挑战又提供机遇。本文以美国运输统计局为例考察面向大数据时代美国联邦政府的机构创新及职能扩展。研究发现,美国运输统计局的职能扩展受经济社会发展需求和统计工作自身完善这两股力量的推动,而且这两股力量在不同阶段的影响权重不同:机构初创阶段主要是回应经济全球化、科技快速发展以及行业去管制化等需求;机构发展阶段除了继续回应经济社会发展所提出的要求,则更多遵循统计专业工作自身演化的逻辑;而这一逻辑主导了数据库架构以及对大数据的应对。最后,结合我国实际,探析了其对我国提升政府交通运输统计服务水平的启示意义。Big data has provided both challenges and opportunities for government institutional innovation and function expansion. Taking the U.S. Bureau of Transportation Statistics(BTS) as an example, this paper examined the institutional innovation and expansion of the U.S. federal government in the era of big data. It is found that the function expansion of BTS is driven by two major forces——needs of economic and social development and self-improvement of statistical standardization, and the weights of these two forces are evolving over time: in the initial stage, the main focus of BTS is to respond to the needs of economic globalization, rapid development of science and technology, and the deregulation of industry. In the development phase, BTS followed the logic of self-evolution of statistical standardization; this logic guided the database architecture and the response to big data. Finally, combined with the status quo of China, this study summarized the learnings from the U.S. practice and proposed guidance to improve the traffic statistics service from the government perspective.

关 键 词:美国运输统计局 机构创新 职能扩展 

分 类 号:D035[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象