新能源汽车电弧故障检测方法及测试系统设计  被引量:16

Design of Arc Fault Detection Method and Test System for New Energy Automobiles

在线阅读下载全文

作  者:郭琳[1,2] 柯希彪 汤引生 陈垚[1] 李英[1] 刘志远[2] GUO Lin;KE Xibiao;TANG Yinsheng;CHEN Yao;LI Ying;LIU Zhiyuan(Shangluo University,Shangluo 726000,China;State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Xi'an 710049,China)

机构地区:[1]商洛学院,陕西商洛726000 [2]西安交通大学电力设备电气绝缘国家重点实验室,陕西西安710049

出  处:《绝缘材料》2018年第11期74-79,共6页Insulating Materials

基  金:陕西省教育厅科研专项(17JK0244);商洛市科技局科研专项(SK2016-37);国家自然科学基金面上项目(51677141)

摘  要:通过调查发现,由电弧故障引发的新能源汽车起火事故呈逐年增多趋势,我国品牌众多的新能源客车尤为严重。为了选择和优化区分故障电弧的特征参量,识别汽车电弧故障,首先介绍了直流故障电弧产生机理、特性和类型,分析了时域、频域和时频域3种直流电弧故障检测方法。其次,搭建了模拟实验测试系统,获取不同负载下的正常电弧和故障电弧回路信号。然后,建立时频域Cassie电弧仿真模型,利用5层小波包分解技术,重构和提取电弧故障发生前后的电流信号,使用能量比值作为特征参量。研究结果表明,在检测周期内大于阈值的特征量区分度明显,能有效识别直流电弧故障。According to the survey, the fire accidents of new energy automobiles causect by arc fault is increasing year by year, especially the new energy buses from China. In order to select and optimize the feature parameters of arc faults and distinguish the arc faults, firstly, the mechanism, features and types of DC fault arc were introduced, and then the time domain, frequency domain, and time-frequency domain detection methods of DC arc faults were analyzed. Secondly, a simulation test system was built to obtain the circuit signals of normal arc and fault arc under different loads. Finally, a simulation model of Cassie arc based on time and frequency domain was set up, and the current signals before and after arc fault were reconstructed and extracted by five-layer wavelet packet decomposition technique. The energy ratio was used as feature parameter. The results show that the feature parameter greater than the thresh- old value in the test cycle can be distinguished obviously, which can effectively identify the DC arc faults.

关 键 词:电弧故障 Cassie模型 小波包 电气火灾 新能源汽车 

分 类 号:TM501.2[电气工程—电器] U469.7[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象